

Parallel Programming and
Concurrency with C# 10 and .NET 6

A modern approach to building faster, more responsive, and
asynchronous .NET applications using C#

Alvin Ashcraft

BIRMINGHAM—MUMBAI

Parallel Programming and Concurrency with C# 10
and .NET 6
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Associate Group Product Manager: Gebin George
Publishing Product Manager: Sathyanarayanan Ellapulli
Senior Editor: Ruvika Rao
Content Development Editor: Yashi Gupta
Technical Editor: Maran Fernandes
Copy Editor: Safis Editing
Project Coordinator: Manisha Singh
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Roshan Kawale
Marketing Coordinator: Sonakshi Bubbar

First published: August 2022
Production reference: 1120822

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-367-2
www.packt.com

http://www.packt.com

To my wife, Stelene, for supporting me through the process of writing a second
book and for helping me become my best self in our journey together. To my
three daughters, for working harder and smarter than I did at their ages and

for their patience during my writing process.

– Alvin Ashcraft

C o n t r i b u t o r s

About the author
Alvin Ashcraft is a writer, software engineer, and developer community champion with over 27 years
of experience in software and content development. He has worked with Microsoft Windows, web,
and cloud technologies since 1995 and has been awarded as a Microsoft MVP 13 times.

Alvin works remotely in the Philadelphia area for Microsoft as a content developer on Microsoft Learn
for the Windows developer documentation team. He also helps organize the TechBash developer
conference in the Northeast US. He has previously worked for companies such as Oracle, Genzeon,
and Allscripts. Originally from the Allentown, PA, area, Alvin currently resides in West Grove, PA,
with his wife and daughters.

I want to thank the people who have been close to me and supported me,
especially my parents and my wife, Stelene’s, parents.

About the reviewers
Ricardo Peres is a Portuguese developer, blogger, and book author and is currently a team leader at
Dixons Carphone. He has over 20 years of experience in software development and his interests include
distributed systems, architectures, design patterns, and .NET development. He won the Microsoft
MVP award in 2015 and held this title up to 2020.

He also authored Entity Framework Core Cookbook – Second Edition and Mastering ASP.NET Core 2.0
and was a technical reviewer for Learning NHibernate 4 for Packt. He also contributed to Syncfusion’s
Succinctly collection, with titles on .NET development. Ricardo maintains a blog—Development With
A Dot—where he writes about technical issues. You can keep up with him on Twitter at @rjperes75.

Joseph Guadagno is a senior director of engineering at Rocket Mortgage, the US’s largest mortgage
lender, based in Detroit, Michigan. He has been writing software for over 30 years and has been
an active member of the .NET community, serving as a Microsoft MVP in .NET, for more than 10
years. He has spoken throughout the United States and at international events on topics including
Microsoft .NET, Microsoft Azure, and SQL. You can see the complete list of events he has spoken at
at https://www.josephguadagno.net/presentations.

When not sitting at a computer, Joe loves to hang out with his family and play games. You can connect
with Joe on Twitter at @jguadagno, on Facebook at JosephGuadagnoNet, and on his blog at
https://www.josephguadagno.net.

https://www.josephguadagno.net/presentations
https://www.josephguadagno.net

Table of Contents
Preface

Part 1: Introduction to Threading in .NET

1
Managed Threading Concepts

Technical requirements 4
.NET threading basics 4
Threads and processes 4
When should we use multithreading in .NET? 5
Background threads 5
What is managed threading? 8

Creating and destroying threads 9
Creating managed threads 9
Pausing thread execution 11
Destroying managed threads 13

Handling threading exceptions 13
Synchronizing data across threads 14
Synchronizing code regions 14
Manual synchronization 16

Scheduling and canceling work 18
Scheduling managed threads 18
Canceling managed threads 21

Summary 25
Questions 25

2
Evolution of Multithreaded Programming in .NET

Technical requirements 28
.NET threading through the years 28
C# 4 and .NET Framework 4.0 28
C# 5 and 6 and .NET Framework 4.5.x 29
C# 7.x and .NET Core 2.0 29
C# 8 and .NET Core 3.0 30

C# 10 and .NET 6 31

Beyond threading basics 31
Managed thread pool 32
Threading and timers 33

Introduction to parallelism 37
Using Parallel.Invoke 38

Table of Contentsviii

Using Parallel.ForEach 40
Basics of Parallel LINQ 41

Introduction to concurrency 43
ConcurrentBag<T> 44
ConcurrentQueue<T> 45
ConcurrentStack<T> 45
BlockingCollection<T> 46

ConcurrentDictionary<TKey, TValue> 47

Basics of async and await 47
Understanding the async keyword 47
Writing an async method 48

Choosing the right path forward 50
Summary 51
Questions 51

3
Best Practices for Managed Threading

Technical requirements 53
Handling static objects 54
Static data and constructors 54
Controlling shared access to static objects 56

Managing deadlocks and race
conditions 60

Mitigating deadlocks 61
Avoiding race conditions 63

Threading limits and other
recommendations 66
Summary 69
Questions 69

4
User Interface Responsiveness and Threading

Technical requirements 71
Leveraging background threads 72
Which threads are background threads? 72
Using async, await, tasks, and WhenAll 73

Using the thread pool 82

Updating the UI thread without
exceptions 85
Summary 88
Questions 88

Table of Contents ix

Part 2: Parallel Programming and Concurrency
with C#

5
Asynchronous Programming with C#

Technical requirements 92
More about asynchronous
programming in .NET 92
I/O-bound operations 92
CPU-bound operations 94
Nested async methods 97

Working with Task objects 102
Exploring Task methods 103
Exploring Task properties 105

Interop with synchronous code 106
Executing async from synchronous methods 107
Executing synchronous code as async 110

Working with multiple background
tasks 113
Asynchronous programming best
practices 114
Summary 115
Questions 116

6
Parallel Programming Concepts

Technical requirements 117
Getting started with the TPL 118
I/O-bound operations 118
CPU-bound operations 119

Parallel loops in .NET 119
Basic Parallel.For loops 119
Parallel loops with thread-local variables 124
Simple Parallel.ForEach loops 126

Cancel a Parallel.ForEachAsync loop 128

Relationships between parallel tasks 131
Under the covers of Parallel.Invoke 131
Understanding parallel child tasks 132

Common pitfalls with parallelism 137
Parallelism is not guaranteed 137
Parallel loops are not always faster 137

Table of Contentsx

Beware of blocking the UI thread 137
Thread safety 138
UI controls 138

ThreadLocal data 138

Summary 138
Questions 139

7
Task Parallel Library (TPL) and Dataflow

Technical requirements 142
Introducing the TPL Dataflow library 142
Why use the TPL Dataflow library? 145
Types of dataflow blocks 146

Implementing the producer/
consumer pattern 151

Creating a data pipeline with
multiple blocks 159
Manipulating data from multiple
data sources 163
Summary 165
Questions 165

8
Parallel Data Structures and Parallel LINQ

Technical requirements 168
Introducing PLINQ 168
PLINQ and performance 169
Creating a PLINQ query 170
Query syntax versus method syntax 171

Converting LINQ queries to PLINQ 172
Handling exceptions with PLINQ queries 174

Preserving data order and merging
data with PLINQ 178

PLINQ data order samples 178
Using WithMergeOptions in PLINQ queries 182

Data structures for parallel
programming in .NET 186
Concurrent collections 187
Synchronization primitives 187

Summary 188
Questions 189

9
Working with Concurrent Collections in .NET

Technical requirements 192
Using BlockingCollection 192
BlockingCollection details 192

Using BlockingCollection with Parallel.
ForEach and PLINQ 193

Table of Contents xi

Using ConcurrentBag 199
Using ConcurrentDictionary 204
Using ConcurrentQueue 210

Using ConcurrentStack 213
Summary 214
Questions 215

Part 3: Advanced Concurrency Concepts

10
Debugging Multithreaded Applications with Visual Studio

Technical requirements 220
Introducing multithreaded debugging 220
Debugging threads and processes 221
Debugging a project with multiple threads 221
Exploring the Threads window 224

Switching and flagging threads 226
Switching threads 226

Flagging threads 226
Freezing threads 228

Debugging a parallel application 229
Using the Parallel Stacks window 229
Using the Parallel Watch window 234

Summary 238
Questions 238

11
Canceling Asynchronous Work

Technical requirements 239
Canceling managed threads 240
Canceling parallel work 242
Canceling a parallel loop 243
Canceling a PLINQ query 245

Discovering patterns for
thread cancellation 247

Canceling with polling 247
Canceling with callbacks 250
Canceling with wait handles 254

Handling multiple
cancellation sources 257
Summary 259
Questions 259

12
Unit Testing Async, Concurrent, and Parallel Code

Technical requirements 262
Unit testing asynchronous code 262

Unit testing concurrent code 268

Table of Contentsxii

Unit testing parallel code 272
Checking for memory leaks
with unit tests 276

Summary 280
Questions 281

Assessments

Index

Other Books You May Enjoy

Preface

Parallel programming and concurrency have become prevalent in modern software development. In this
book, you will learn how to leverage the latest asynchronous, parallel, and concurrency features in .NET
6 when building your next application. We will explore the power of multithreaded C# development
patterns and practices. By exploring the benefits and challenges of threading in .NET through concise,
real-world examples, choosing the right option for your project will become second nature.

You have many choices when introducing multithreading to a new or existing .NET application. The
goal of this book is to not only teach you how to use parallel programming and concurrency in C# and
.NET but also to help you understand which of the constructs to choose for a given scenario. Whether
you are developing for desktop, mobile, the web, or the cloud, performance and responsiveness are key
to the success of an application. This book will help every type of C# developer to scale their applications
to their users’ needs and avoid the pitfalls often encountered with multithreaded development.

Who this book is for
This book is for beginner- to intermediate-level .NET developers who want to employ the latest
parallel and concurrency features in .NET when building their applications. You should have a solid
understanding of the C# language and some version of the .NET Framework or .NET Core.

What this book covers
Chapter 1, Managed Threading Concepts, covers the basics of working with managed threading in
.NET. We will discuss how to create and destroy threads, handle exceptions, synchronize data, and
the objects provided by .NET to handle background operations. You will gain a basic understanding
of how threads can be managed in a .NET application. Practical examples in this chapter will illustrate
how to use managed threading in C# projects.

Chapter 2, Evolution of Multithreaded Programming in .NET, introduces some of the concepts and
features that will be explored in more depth in later chapters, including async/await, concurrent
collections, and parallelism. You will learn how their options are expanded when selecting how to
approach concurrency in applications.

Chapter 3, Best Practices for Managed Threading, covers some best practices when it comes to integrating
managed threading concepts. We will cover important concepts such as static data, deadlocks, and
exhausting managed resources. These are all areas that can lead to unstable applications and unexpected
behavior. You will be given practical advice to avoid these pitfalls.

Prefacexiv

Chapter 4, User Interface Responsiveness with Threading, explains how to use ThreadPool in .NET. The
real-world examples in this chapter will give you valuable options for ensuring UI responsiveness in
your .NET applications.

Chapter 5, Asynchronous Programming with C#, explains asynchronous programming in C# and
explores the best use of tasks in .NET.

Chapter 6, Parallel Programming Concepts, delves deeper into the Task Parallel Library (TPL) and
tasking concepts.

Chapter 7, Task Parallel Library (TPL) and Dataflow, introduces the TPL Dataflow Library and illustrates
some common patterns for its use through in-depth examples.

Chapter 8, Parallel Data Structures and Parallel LINQ (PLINQ), explores some of .NET’s useful features,
including Parallel LINQ (PLINQ). Follow along with some practical examples of PLINQ in C#.

Chapter 9, Working with Concurrent Collections in .NET, dives deeper into some of the concurrent
collections that help provide data integrity when using concurrency and parallelism in your code.

Chapter 10, Debugging Multithreaded Applications with Visual Studio, teaches you how to use the
power of Visual Studio when debugging multithreaded .NET applications. This chapter will explore
the tools in detail through concrete examples.

Chapter 11, Canceling Asynchronous Work, dives deeper into the different methods available to cancel
concurrent and parallel work with .NET. You will gain a deep understanding of how to safely cancel
asynchronous work.

Chapter 12, Unit Testing Async, Concurrent, and Parallel Code, provides some concrete advice and
real-world examples of how developers can unit test code that employs multithreaded constructs.
These examples will illustrate how unit tests can still be reliable while covering code that performs
multithreaded operations.

To get the most out of this book
To follow along with the examples in this book, the following software is recommended for Windows
developers:

• Visual Studio 2022 version 17.0 or later

• .NET 6

While these are recommended, if you have the .NET 6 SDK installed, you can use your preferred
editor for most of the examples. For example, Visual Studio 2022 for Mac on macOS 10.13 or later,
JetBrains Rider, or Visual Studio Code will work just as well. However, for any WPF or WinForms
projects, Visual Studio and Windows are required. Newer versions of Visual Studio and .NET, when
they are released, should also work with the examples in this book.

Download the example code files xv

You are expected to have a foundational knowledge of C# and .NET with a working knowledge of
Language Integrated Query (LINQ).

The most recent Visual Studio 2022 install instructions and prerequisites can always be found on
Microsoft Docs here: https://docs.microsoft.com/visualstudio/install/
install-visual-studio?view=vs-2022.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

If you are unfamiliar with LINQ, there is a great C# reference on Microsoft Docs to get you started
before working through the examples in this book: https://docs.microsoft.com/dotnet/
csharp/programming-guide/concepts/linq/.

After reading this book, I would also recommend exploring the posts on the .NET Parallel Programming
team blog. Most of the articles are several years old, but they explore the thinking behind many of
the decisions made when building the .NET libraries that expose parallel programming constructs:
https://devblogs.microsoft.com/pfxteam/.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-
10-and-.NET-6. If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/Z4GcQ.

https://docs.microsoft.com/visualstudio/install/install-visual-studio?view=vs-2022
https://docs.microsoft.com/visualstudio/install/install-visual-studio?view=vs-2022
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/linq/
https://devblogs.microsoft.com/pfxteam/
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/Z4GcQ

Prefacexvi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “By calling
ThreadPool.SetMaxThreads, you can change the maximum values for workerThreads
and completionPortThreads.”

A block of code is set as follows:

public async Task PerformCalculations()

{

 _runningTotal = 3;

 await MultiplyValue().ContinueWith(async (Task) => {

 await AddValue();

 });

 Console.WriteLine($”Running total is {_runningTotal}”);

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

 private async Task MultiplyValue()

 {

 await Task.Delay(100);

 var currentTotal = Interlocked.Read(ref

 _runningTotal);

 Interlocked.Exchange(ref _runningTotal,

 currentTotal * 10);

 }

}

Any command-line input or output is written as follows:

$ mkdir css

$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Let’s look at a quick example of how
to implement this in our CancellationPatterns project.”

Get in touch xvii

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Parallel Programming and Concurrency with C# 10 and .NET 6, we’d love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1803243678

Part 1:
Introduction to

Threading in .NET

In this part, you will learn the basics of managed threading in .NET, discover how it has
evolved since the early days of the .NET Framework, and pick up some best practices to avoid
common pitfalls.

This part contains the following chapters:

• Chapter 1, Managed Threading Concepts

• Chapter 2, Evolution of Multithreaded Programming in .NET

• Chapter 3, Best Practices for Managed Threading

• Chapter 4, User Interface Responsiveness with Threading

1
Managed

Threading Concepts

Parallel programming and concurrency are becoming more prevalent in modern .NET development.
Most developers today have been exposed to asynchronous programming with the async and
await keywords in C#. This book will cover all of these concepts in the chapters ahead.

In this chapter, we will start with the basics of how to work with managed threading in .NET. You will
learn how to create and destroy threads, handle exceptions, synchronize data, and utilize the objects
provided by .NET to handle background operations. Additionally, you will gain a basic understanding
of how threads can be managed in a .NET application. The practical examples in this chapter will
illustrate how to leverage managed threading in C# projects.

In this chapter, we will cover the following topics:

• .NET threading basics

• Creating and destroying threads

• Handling threading exceptions

• Synchronizing data across threads

• Scheduling and canceling work

By starting with the core concepts of threading in .NET, you will gain a solid foundation as you move
forward with your learning throughout this book. It is important to understand the basics to prevent
common mistakes from being made while introducing threading and asynchrony to .NET applications.
It is all too easy to exhaust resources or put the application’s data in an invalid state. Let’s get started
with managed threading with C#.

Managed Threading Concepts4

Technical requirements
To follow along with the examples in this chapter, the following software is recommended:

• Visual Studio 2022 version 17.0 or later

• .NET 6

While these are recommended, as long as you have .NET 6 installed, you can use your preferred editor.
For example, Visual Studio 2022 for Mac, JetBrains Rider, or Visual Studio Code will work just as well.

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter01.

.NET threading basics
It’s time to get started by learning about the basics of threading in C# and .NET. We will be
covering the managed threading concepts that are available in .NET 6, but many of these features
have been part of .NET since the beginning. The System.Threading namespace has been
available since .NET Framework 1.0. In the subsequent 20 years, there have been many useful
features added for developers.

In order to responsibly use threading in your applications, you should understand exactly what a
thread is and how threads are used by your application’s processes.

Threads and processes

We will start our journey with the basic units of application processing, threads, and processes. A
process encapsulates all the execution of an application. This is true for all platforms and frameworks.
In .NET, you can think of a process as your .exe or hosted service.

Note
In .NET Framework, the concept of application domains (or app domains), which create
isolation units within a process, was introduced. These app domains provide security and
reliability by isolating the execution of code loaded into a new app domain. App domains
still exist but are not available for developers to create or unload in .NET Core and modern
versions of .NET. To read more about app domains, check out this Microsoft Docs article
at https://docs.microsoft.com/dotnet/framework/app-domains/
application-domains.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter01
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter01
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter01
https://docs.microsoft.com/dotnet/framework/app-domains/application-domains
https://docs.microsoft.com/dotnet/framework/app-domains/application-domains

.NET threading basics 5

A thread represents a single unit of execution within a process. By default, a .NET application will
execute all its logic on a single thread (that is, the primary or main thread). Developers can leverage
managed threads and other .NET constructs to move from a single-threaded to a multithreaded world,
but how do you know when to take this step?

When should we use multithreading in .NET?

There are multiple factors to consider when deciding whether to introduce threading to an application.
These factors are both internal and external to the application. The external factors include the
hardware in terms of where the application will be deployed, how powerful the processors are where
the application will be running, and what other types of processes will be running on these systems?

If your application will be competing for limited resources, it is best to be judicious with the use of
multiple threads. If users get the impression that your application is impacting the performance of
their systems, you will need to scale back on the number of threads being consumed by your process.
Another factor that comes into play is how critical your application is in relation to others on the system.
Mission-critical applications will have more resources allocated to remain responsive when needed.

Other common reasons for introducing threading relate to the application itself. Desktop and mobile
applications need to keep the user interface (UI) responsive to user input. If the application needs
to process a large amount of data or load it from a database, file, or network resource, executing on
the main thread can cause the UI to freeze or lag. Also, executing long-running tasks in parallel on
multiple threads can reduce the overall execution time of the task.

These operations can be offloaded to background threads if the execution of the tasks is not critical
to the application state. Let’s look at the difference between foreground threads and background
threads in .NET.

Background threads

The difference between foreground threads and background threads might not be what you think. A
managed thread created as a foreground thread is not the UI thread or the main thread. Foreground
threads are threads that will prevent the managed process from terminating if they are running. If
an application is terminated, any running background threads will be stopped so that the process
can shut down.

By default, newly created threads are foreground threads. To create a new background thread, set the
Thread.IsBackground property to true before starting the thread. Additionally, you can use
the IsBackground property to determine the background status of an existing thread. Let’s look
at an example where you might want to use a background thread in your application.

Managed Threading Concepts6

In this example, we will create a console application in Visual Studio that will continuously check the
status of a network connection on a background thread. Create a new .NET 6 console app project,
name it BackgroundPingConsoleApp, and in Program.cs, enter the following code:

Console.WriteLine("Hello, World!");

var bgThread = new Thread(() =>

{

 while (true)

 {

 bool isNetworkUp = System.Net.NetworkInformation

 .NetworkInterface.GetIsNetworkAvailable();

 Console.WriteLine($"Is network available? Answer:

 {isNetworkUp}");

 Thread.Sleep(100);

 }

});

bgThread.IsBackground = true;

bgThread.Start();

for (int i = 0; i < 10; i++)

{

 Console.WriteLine("Main thread working...");

 Task.Delay(500);

}

Console.WriteLine("Done");

Console.ReadKey();

Let’s discuss each part of the preceding code before we run it and examine the output:

1. The first Console.WriteLine statement was created by the project template. We’ll keep
this here to help illustrate the order output in the console.

2. Next, we’re creating a new Thread type named bgThread. Inside the body of the thread,
there is a while loop that will execute continuously until the thread is terminated. Inside
the loop, we’re calling the GetIsNetworkAvailable method and outputting the result
of that call to the console. Before starting over again, we’re using Thread.Sleep to inject
a 100-millisecond delay.

3. The next line after creating the thread is the key part of this lesson:

bgThread.IsBackground = true;

.NET threading basics 7

Setting the IsBackground property to true is what makes our new thread a
background thread. This tells our application that the code executing inside the thread is
not critical to the application, and the process can terminate without needing to wait for the
thread to complete its work. That is a good thing here because the while loop we created
will never be complete.

4. On the next line, we start the thread with the Start method.

5. Next, the application kicks off some work inside the application’s primary thread. A for loop
will execute 10 times and output "Main thread working..." to the console. At the
end of each iteration of the loop, Task.Delay is used to wait 500 milliseconds, hopefully
providing some time for the background thread to perform some work.

6. After the for loop, the application will output "Done" to the console and wait for the user
input to terminate the application with the Console.ReadKey method.

Now, run the application and examine the console output. You can press any key to stop the application
when you feel you have let it run for long enough:

Figure 1.1 – Viewing the threaded console application output

The result might not be what you expected. You can see that the program executed all the logic on
the primary thread before starting any of the background thread work. Later, we’ll see how to change
the priority of the threads to manipulate which work will be processed first.

Managed Threading Concepts8

What is important to understand, in this example, is that we were able to stop the console application
by pressing a key to execute the Console.ReadKey command. Even though the background
thread is still running, the process does not consider the thread to be critical to the application. If you
comment out the following line, the application will no longer terminate by pressing a key:

bgThread.IsBackground = true;

The application will have to be stopped by closing the command window or using the Debug | Stop
Debugging menu item in Visual Studio. Later, in the Scheduling and canceling work section, we will
learn how to cancel work in a managed thread.

Before we look at any more examples of using managed threads, we will take some time to learn
exactly what they are.

What is managed threading?

In .NET, managed threading is implemented by the System.Threading.Thread class that we
used in the previous example. The managed execution environment for the current process monitors
all the threads that have been run as part of the process. Unmanaged threading is how threads
are managed when programming in C++ with native Win32 threading elements. It is possible for
unmanaged threads to enter a managed process through COM interop or through platform invoke
(PInvoke) calls from .NET code. If this thread is entering the managed environment for the first
time, .NET will create a new Thread object to be managed by the execution environment.

A managed thread can be uniquely identified using the ManagedThreadId property of the
Thread object. This property is an integer that is guaranteed to be unique across all threads and
will not change over time.

The ThreadState property is a read-only property that provides the current execution
state of the Thread object. In the example in the .NET threading basics section, if we had
checked the ThreadState property before calling bgThread.Start(), it would
have been Unstarted. After calling Start, the state will change to Background. If it
were not a background thread, calling Start would change the ThreadState property
to Running.

Here is a full list of the ThreadState enum values:

• Aborted: The thread has been aborted.

• AbortRequested: An abort has been requested but has not yet been completed.

• Background: The thread is running in the background (IsBackground has been set
to true).

• Running: The thread is currently running.

Creating and destroying threads 9

• Stopped: The thread has been stopped.

• StopRequested: A stop has been requested but has not yet been completed.

• Suspended: The thread has been suspended.

• SuspendRequested: Thread suspension has been requested but has not yet been completed.

• Unstarted: The thread has been created but not yet started.

• WaitSleepJoin: The thread is currently blocked.

The Thread.IsAlive property is a less specific property that can tell you whether a thread is
currently running. It is a boolean property that will return true if the thread has started and has
not been stopped or aborted in some way.

Threads also have a Name property that defaults to null if they have never been set. Once a Name
property is set on a thread, it cannot be changed. If you attempt to set the Name property of a thread
that is not null, it will throw InvalidOperationException.

We will cover additional aspects of managed threads in the remainder of this chapter. In the next section,
we will dive deeper into the available methods and options for creating and destroying threads in .NET.

Creating and destroying threads
Creating and destroying threads are fundamental concepts of managed threading in .NET. We
have already seen one code example that created a thread, but there are some additional constructors
of the Thread class that should be discussed first. Also, we will look at a few methods of
pausing or interrupting thread execution. Finally, we will cover some ways to destroy or terminate a
thread’s execution.

Let’s get started by going into more detail regarding creating and starting threads.

Creating managed threads

Creating managed threads in .NET is accomplished by instantiating a new Thread object. The
Thread class has four constructor overloads:

• Thread(ParameterizedThreadStart): This creates a new Thread object. It does
this by passing a delegate with a constructor that takes an object as its parameter that can be
passed when calling Thread.Start().

• Thread(ThreadStart): This creates a new Thread object that will execute the method
to be invoked, which is provided as the ThreadStart property.

• Thread(ParameterizedThreadStart, Int32): This adds a maxStackSize
parameter. Avoid using this overload because it is best to allow .NET to manage the stack size.

Managed Threading Concepts10

• Thread(ThreadStart, Int32): This adds a maxStackSize parameter. Avoid
using this overload because it is best to allow .NET to manage the stack size.

Our first example used the Thread(ThreadStart) constructor. Let’s look at a version of
that code that uses ParameterizedThreadStart to pass a value by limiting the number of
iterations of the while loop:

Console.WriteLine("Hello, World!");

var bgThread = new Thread((object? data) =>

{

 if (data is null) return;

 int counter = 0;

 var result = int.TryParse(data.ToString(),

 out int maxCount);

 if (!result) return;

 while (counter < maxCount)

 {

 bool isNetworkUp = System.Net.NetworkInformation

 .NetworkInterface.GetIsNetworkAvailable();

 Console.WriteLine($"Is network available? Answer:

 {isNetworkUp}");

 Thread.Sleep(100);

 counter++;

 }

});

bgThread.IsBackground = true;

bgThread.Start(12);

for (int i = 0; i < 10; i++)

{

 Console.WriteLine("Main thread working...");

 Task.Delay(500);

}

Console.WriteLine("Done");

Console.ReadKey();

If you run the application, it will run just like the last example, but the background thread should only
output 12 lines to the console. You can try passing different integer values into the Start method
to see how that impacts the console output.

Creating and destroying threads 11

If you want to get a reference to the thread that is executing the current code, you can use the Thread.
CurrentThread static property:

var currentThread = System.Threading.Thread.CurrentThread;

This can be useful if your code needs to check the current thread’s ManagedThreadId, Priority,
or whether it is running in the background.

Next, let’s look at how we can pause or interrupt the execution of a thread.

Pausing thread execution

Sometimes, it is necessary to pause the execution of a thread. A common real-life example of this is
a retry mechanism on a background thread. If you have a method that sends log data to a network
resource, but the network is unavailable, you can call Thread.Sleep to wait for a specific interval
before trying again. Thread.Sleep is a static method that will block the current thread for the
number of milliseconds specified. It is not possible to call Thread.Sleep on a thread other than
the current one.

We have already used Thread.Sleep in the examples in this chapter, but let’s change the code
slightly to see how it can impact the order of events. Change the Thread.Sleep interval inside the
thread to 10, remove the code that makes it a background thread, and change the Task.Delay()
call to Thread.Sleep(100):

Console.WriteLine("Hello, World!");

var bgThread = new Thread((object? data) =>

{

 if (data is null) return;

 int counter = 0;

 var result = int.TryParse(data.ToString(), out int

 maxCount);

 if (!result) return;

 while (counter < maxCount)

 {

 bool isNetworkUp = System.Net.NetworkInformation.

 NetworkInterface.GetIsNetworkAvailable();

 Console.WriteLine($"Is network available? Answer:

 {isNetworkUp}");

 Thread.Sleep(10);

 counter++;

Managed Threading Concepts12

 }

});

bgThread.Start(12);

for (int i = 0; i < 12; i++)

{

 Console.WriteLine("Main thread working...");

 Thread.Sleep(100);

}

Console.WriteLine("Done");

Console.ReadKey();

When running the application again, you can see that putting a greater delay on the primary thread
allows the process inside bgThread to begin executing before the primary thread completes its work:

Figure 1.2 – Using Thread.Sleep to change the order of events

The two Thread.Sleep intervals can be adjusted to see how they impact the console output.
Give it a try!

Handling threading exceptions 13

Additionally, it is possible to pass Timeout.Infinite to Thread.Sleep. This will cause
the thread to pause until it is interrupted or aborted by another thread or the managed environment.
Interrupting a blocked or paused thread is accomplished by calling Thread.Interrupt. When
a thread is interrupted, it will receive a ThreadInterruptedException exception.

The exception handler should allow the thread to continue working or clean up any remaining work.
If the exception is unhandled, the runtime will catch the exception and stop the thread. Calling
Thread.Interrupt on a running thread will have no effect until that thread has been blocked.

Now that you understand how to create an interrupt thread, let’s wrap up this section by learning
how to destroy a thread.

Destroying managed threads

Generally, destroying a managed thread is considered an unsafe practice. That is why .NET 6 no
longer supports the Thread.Abort method. In .NET Framework, calling Thread.Abort on a
thread would raise a ThreadAbortedException exception and stop the thread from running.
Aborting threads was not made available in .NET Core or any of the newer versions of .NET. If some
code needs to be forcibly stopped, it is recommended that you run it in a separate process from your
other code and use Process.Kill to terminate the other process.

Any other thread termination should be handled cooperatively using cancelation. We will see how
to do this in the Scheduling and canceling work section. Next, let’s discuss some of the exceptions to
handle when working with managed threads.

Handling threading exceptions
There are a couple of exception types that are specific to managed threading, including the
ThreadInterruptedException exception that we covered in the previous section. Another
exception type that is specific to threading is ThreadAbortException. However, as we discussed
in the previous section, Thread.Abort is not supported in .NET 6, so, although this exception
type exists in .NET 6, it is not necessary to handle it, as this type of exception is only possible in .NET
Framework applications.

Two other exceptions are the ThreadStartException exception and the
ThreadStateException exception. The ThreadStartException exception is thrown if
there is a problem starting the managed thread before any user code in the thread can be executed. The
ThreadStateException exception is thrown when a method on the thread is called that is not
available when the thread is in its current ThreadState property. For example, calling Thread.
Start on a thread that has already started is invalid and will cause a ThreadStateException
exception. These types of exceptions can usually be avoided by checking the ThreadState property
before acting on the thread.

Managed Threading Concepts14

It is important to implement comprehensive exception handling in multithreaded applications. If code
in managed threads begins to fail silently without any logging or causing the process to terminate,
the application can fall into an invalid state. This can also result in degrading performance and
unresponsiveness. While this kind of degradation might be noticed quickly for many applications,
some services, and other non-GUI-based applications, could continue for some time without any issues
being noticed. Adding logging to the exception handlers along with a process to alert users when logs
are reporting failures will help to prevent problems with undetected failing threads.

In the next section, we’ll discuss another challenge with multithreaded code: keeping data in-sync
across multiple threads.

Synchronizing data across threads
In this section, we will look at some of the methods that are available in .NET for synchronizing
data across multiple threads. Shared data across threads can be one of the primary pain points of
multithreaded development if not handled properly. Classes in .NET that have protections in place
for threading are said to be thread-safe.

Data in multithreaded applications can be synchronized in several different ways:

• Synchronized code regions: Only synchronize the block of code that is necessary using the
Monitor class or with some help from the .NET compiler.

• Manual synchronization: There are several synchronization primitives in .NET that can be
used to manually synchronize data.

• Synchronized context: This is only available in .NET Framework and Xamarin applications.

• System.Collections.Concurrent classes: There are specialized .NET collections to handle
concurrency. We will examine these in Chapter 9.

In this section, we’ll look at the first two methods. Let’s start by discussing how to synchronize code
regions in your application.

Synchronizing code regions

There are several techniques you can use to synchronize regions of your code. The first one we will
discuss is the Monitor class. You can surround a block of code that can be accessed by multiple
threads with calls to Monitor.Enter and Monitor.Exit:

...

Monitor.Enter(order);

order.AddDetails(orderDetail);

Synchronizing data across threads 15

Monitor.Exit(order);

...

In this example, imagine you have an order object that is being updated by multiple threads in
parallel. The Monitor class will lock access from other threads while the current thread adds an
orderDetail item to the order object. The key to minimizing the chance of introducing wait
time to other threads is by only locking the lines of code that need to be synchronized.

Note
The Interlocked class, as discussed in this section, performs atomic operations in user mode
rather than kernel mode. If you want to read more about this distinction, I recommend checking
out this blog post by Nguyen Thai Duong: https://duongnt.com/interlocked-
synchronization/.

The Interlocked class provides several methods for performing atomic operations on objects
shared across multiple threads. The following list of methods is part of the Interlocked class:

• Add: This adds two integers, replacing the first one with the sum of the two

• And: This is a bitwise and operation for two integers

• CompareExchange: This compares two objects for equality and replaces the first if they
are equal

• Decrement: This decrements an integer

• Exchange: This sets a variable to a new value

• Increment: This increments an integer

• Or: This is a bitwise or operation for two integers

These Interlocked operations will lock access to the target object only for the duration of
that operation.

Additionally, the lock statement in C# can be used to lock access to a block of code to only a single
thread. The lock statement is a language construct implemented using the .NET Monitor.Enter
and Monitor.Exit operations.

There is some built-in compiler support for the lock and Monitor blocks. If an exception is
thrown inside one of these blocks, the lock is automatically released. The C# compiler generates a
try/finally block around the synchronized code and makes a call to Monitor.Exit in the
finally block.

Let’s finish up this section on synchronization by looking at some other .NET classes that provide
support for manual data synchronization.

https://duongnt.com/interlocked-synchronization/
https://duongnt.com/interlocked-synchronization/

Managed Threading Concepts16

Manual synchronization

The use of manual synchronization is common when synchronizing data across multiple threads.
Some types of data cannot be protected in other ways, such as these:

• Global fields: These are variables that can be accessed globally across the application.

• Static fields: These are static variables in a class.

• Instance fields: These are instance variables in a class.

These fields do not have method bodies, so there is no way to put a synchronized code region around
them. With manual synchronization, you can protect all the areas where these objects are used. These
regions can be protected with lock statements in C#, but some other synchronization primitives
provide access to shared data and can coordinate the interactions between threads on a more granular
level. The first construct we will examine is the System.Threading.Mutex class.

The Mutex class is similar to the Monitor class in that it blocks access to a region of code, but
it can also provide the ability to grant access to other processes. When using the Mutex class, use
the WaitOne() and ReleaseMutex() methods to acquire and release the lock. Let’s look at
the same order/order details example. This time, we’ll use a Mutex class declared at the class level:

private static Mutex orderMutex = new Mutex();

...

orderMutex.WaitOne();

order.AddDetails(orderDetail);

orderMutex.ReleaseMutex();

...

If you want to enforce a timeout period on the Mutex class, you can call the WaitOne overload
with a timeout value:

orderMutex.WaitOne(500);

It is important to note that Mutex is a disposable type. You should always call Dispose() on the
object when you are finished using it. Additionally, you can also enclose a disposable type within a
using block to have it disposed of indirectly.

In this section, the last .NET manual locking construct we are going to examine is the
ReaderWriterLockSlim class. You can use this type if you have an object that is used across
multiple threads, but most of the code is reading data from the object. You don’t want to lock access
to the object in the blocks of code that are reading data, but you do want to prevent reading while the
object is being updated or simultaneously written. This is referred to as "multiple readers, single writer."

Synchronizing data across threads 17

This ContactListManager class contains a list of contacts that can be added to or retrieved by
a phone number. The class assumes that these operations can be called from multiple threads and uses
the ReaderWriterLockSlim class to apply a read lock in the GetContactByPhoneNumber
method and a write lock in the AddContact method. The locks are released in a finally block
to ensure they are always released, even when exceptions are encountered:

public class ContactListManager

{

 private readonly List<Contact> contacts;

 private readonly ReaderWriterLockSlim contactLock =

 new ReaderWriterLockSlim();

 public ContactListManager(

 List<Contact> initialContacts)

 {

 contacts = initialContacts;

 }

 public void AddContact(Contact newContact)

 {

 try

 {

 contactLock.EnterWriteLock();

 contacts.Add(newContact);

 }

 finally

 {

 contactLock.ExitWriteLock();

 }

 }

 public Contact GetContactByPhoneNumber(string

 phoneNumber)

 {

 try

 {

 contactLock.EnterReadLock();

 return contacts.FirstOrDefault(x =>

 x.PhoneNumber == phoneNumber);

 }

Managed Threading Concepts18

 finally

 {

 contactLock.ExitReadLock();

 }

 }

}

If you were to add a DeleteContact method to the ContactListManager class, you would
leverage the same EnterWriteLock method to prevent any conflicts with the other operations
in the class. If a lock is forgotten in one usage of contacts, it can cause any of the other operations
to fail. Additionally, it is possible to apply a timeout to the ReaderWriterLockSlim locks:

contacts.EnterWriteLock(1000);

There are several other synchronization primitives that we have not covered in this section, but we have
discussed some of the most common types that you will use. To read more about the available types for
manual synchronization, you can visit Microsoft Docs at https://docs.microsoft.com/
dotnet/standard/threading/overview-of-synchronization-primitives.

Now that we have examined different ways of synchronizing data when working with managed threads,
let’s cover two more important topics before wrapping up this first chapter. We are going to discuss
techniques to schedule work on threads and how to cancel managed threads cooperatively.

Scheduling and canceling work
When orchestrating multithreaded processing in an application, it is important to understand how
to schedule and cancel work on managed threads.

Let’s start by looking at how scheduling works with managed threads in .NET.

Scheduling managed threads

When it comes to managed threads, scheduling is not as explicit as it might sound. There is no
mechanism to tell the operating system to kick off work at specific times or to execute within certain
intervals. While you could write this kind of logic, it is probably not necessary. The process of
scheduling managed threads is simply managed by setting priorities on the threads. To do this, set
the Thread.Priority property to one of the available ThreadPriority values: Highest,
AboveNormal, Normal (default), BelowNormal, or Lowest.

https://docs.microsoft.com/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/dotnet/standard/threading/overview-of-synchronization-primitives

Scheduling and canceling work 19

Generally, higher priority threads will execute before those of lower priority. Usually, a thread of
Lowest priority will not execute until all the higher priority threads have been completed. If the
Lowest priority thread has started and a Normal thread kicks off, the Lowest priority thread
will be suspended so that the Normal thread can be run. These rules are not absolute, but you can
use them as a guide. Most of the time, you will leave the default of Normal for your threads.

When there are multiple threads of the same priority, the operating system will cycle through them,
giving each thread up to a maximum allotment of time before suspending work and moving on to the
next thread of the same priority. The logic will vary by the operating system, and the prioritization of
a process can change based on whether the application is in the foreground of the UI.

Let’s use our network checking code to test thread priorities:

1. Start by creating a new console application in Visual Studio

2. Add a new class to the project, named NetworkingWork, and add a method named
CheckNetworkStatus with the following implementation:

public void CheckNetworkStatus(object data)

{

 for (int i = 0; i < 12; i++)

 {

 bool isNetworkUp = System.Net.

 NetworkInformation.NetworkInterface

 .GetIsNetworkAvailable();

 Console.WriteLine($"Thread priority

 {(string)data}; Is network available?

 Answer: {isNetworkUp}");

 i++;

 }

}

The calling code will be passing a parameter with the priority of the thread that is currently
executing the message. That will be added as part of the console output inside the for loop,
so users can see which priority threads are running first.

3. Next, replace the contents of Program.cs with the following code:

using BackgroundPingConsoleApp_sched;

Console.WriteLine("Hello, World!");

var networkingWork = new NetworkingWork();

Managed Threading Concepts20

var bgThread1 = new

 Thread(networkingWork.CheckNetworkStatus);

var bgThread2 = new

 Thread(networkingWork.CheckNetworkStatus);

var bgThread3 = new

 Thread(networkingWork.CheckNetworkStatus);

var bgThread4 = new

 Thread(networkingWork.CheckNetworkStatus);

var bgThread5 = new

 Thread(networkingWork.CheckNetworkStatus);

bgThread1.Priority = ThreadPriority.Lowest;

bgThread2.Priority = ThreadPriority.BelowNormal;

bgThread3.Priority = ThreadPriority.Normal;

bgThread4.Priority = ThreadPriority.AboveNormal;

bgThread5.Priority = ThreadPriority.Highest;

bgThread1.Start("Lowest");

bgThread2.Start("BelowNormal");

bgThread3.Start("Normal");

bgThread4.Start("AboveNormal");

bgThread5.Start("Highest");

for (int i = 0; i < 10; i++)

{

 Console.WriteLine("Main thread working...");

}

Console.WriteLine("Done");

Console.ReadKey();

The code creates five Thread objects, each with a different Thread.Priority value.
To make things a little more interesting, the threads are being started in reverse order of
their priorities. You can try changing this on your own to see how the order of execution is
impacted.

4. Now run the application and examine the output:

Scheduling and canceling work 21

Figure 1.3 – Console output from five different threads

You can see that the operating system, which, in my case, is Windows 11, sometimes executes lower
priority threads before all the higher priority threads have completed their work. The algorithm for
selecting the next thread to run is a bit of a mystery. You should also remember that this is multithreading.
Multiple threads are running at once. The exact number of threads that can run simultaneously will
vary by the processor or virtual machine configuration.

Let’s wrap things up by learning how to cancel a running thread.

Canceling managed threads

Canceling managed threads is one of the more important concepts to understand about managed
threading. If you have long-running operations running on foreground threads, they should support
cancelation. There are times when you might want to allow users to cancel the processes through your
application’s UI, or the cancelation might be part of a cleanup process while the application is closing.

Managed Threading Concepts22

To cancel an operation in a managed thread, you will use a CancellationToken parameter. The
Thread object itself does not have built-in support for cancellation tokens like some of the modern
threading constructs .NET. So, we will have to pass the token to the method running in the newly
created thread. In the next exercise, we will modify the previous example to support cancelation:

1. Start by updating NetworkingWork.cs so that the parameter passed to
CheckNetworkStatus is a CancellationToken parameter:

public void CheckNetworkStatus(object data)

{

 var cancelToken = (CancellationToken)data;

 while (!cancelToken.IsCancellationRequested)

 {

 bool isNetworkUp = System.Net

 .NetworkInformation.NetworkInterface

 .GetIsNetworkAvailable();

 Console.WriteLine($"Is network available?

 Answer: {isNetworkUp}");

 }

}

The code will keep checking the network status inside a while loop until
IsCancellationRequested becomes true.

2. In Program.cs, we’re going to return to working with only one Thread object. Remove or
comment out all of the previous background threads. To pass the CancellationToken
parameter to the Thread.Start method, create a new CancellationTokenSource
object, and name it ctSource. The cancellation token is available in the Token property:

var pingThread = new

 Thread(networkingWork.CheckNetworkStatus);

var ctSource = new CancellationTokenSource();

pingThread.Start(ctSource.Token);

...

Scheduling and canceling work 23

3. Next, inside the for loop, add a Thread.Sleep(100) statement to allow pingThread
to execute while the main thread is suspended:

for (int i = 0; i < 10; i++)

{

 Console.WriteLine("Main thread working...");

 Thread.Sleep(100);

}

4. After the for loop is complete, invoke the Cancel() method, join the thread back to the
main thread, and dispose of the ctSource object. The Join method will block the current
thread and wait for pingThread to complete using this thread:

...

ctSource.Cancel();

pingThread.Join();

ctSource.Dispose();

5. Now, when you run the application, you will see the network checking stops shortly after the
final Thread.Sleep statement on the main thread has been executed:

Figure 1.4 – Canceling a thread in the console application

Managed Threading Concepts24

Now the network checker application is gracefully canceling the threaded work before listening for
a keystroke to close the application.

When you have a long-running process on a managed thread, you should check for cancellation as
the code iterates through loops, begins a new step in a process, and at other logical checkpoints in
the process. If the operation uses a timer to periodically perform work, the token should be checked
each time the timer executes.

Another way to listen for cancellation is by registering a delegate to be invoked when a cancellation
has been requested. Pass the delegate to the Token.Register method inside the managed thread
to receive a cancellation callback. The following CheckNetworkStatus2 method will work
exactly like the previous example:

public void CheckNetworkStatus2(object data)

{

 bool finish = false;

 var cancelToken = (CancellationToken)data;

 cancelToken.Register(() => {

 // Clean up and end pending work

 finish = true;

 });

 while (!finish)

 {

 bool isNetworkUp = System.Net.NetworkInformation

 .NetworkInterface.GetIsNetworkAvailable();

 Console.WriteLine($"Is network available? Answer:

 {isNetworkUp}");

 }

}

Using a delegate like this is more useful if you have multiple parts of your code that need to listen for
a cancellation request. A callback method can call several cleanup methods or set another flag that
is monitored throughout the thread. It encapsulates the cleanup operation nicely.

We will revisit cancellation in Chapter 11, as we introduce new parallelism and concurrency concepts.
However, this section should provide a solid foundation for understanding what comes next.

That concludes the final section on managed threads. Let’s wrap things up and review what we have learned.

Summary 25

Summary
In this chapter, we covered the basics of managed threading and the System.Threading.Thread
class. You should now have a good understanding of how to create and schedule a thread in .NET. You
learned about some of the techniques for passing data to threads and how to use background threads
for non-critical operations, so they don’t prevent your application from terminating. Finally, we used
two different techniques for canceling threads in .NET.

In the next chapter, Chapter 2, we will learn how .NET has simplified and improved parallel programming
and concurrency for developers over the last 20 years. Significant improvements were added in .NET
4.5 in the form of the async and await keywords, and .NET Core removed some of the legacy
threading constructs of .NET Framework.

Questions
1. What is a managed thread?

2. How do you make a background thread?

3. What happens if you try to set the IsBackground property of a running thread?

4. How does .NET handle scheduling managed threads?

5. What is the highest thread priority?

6. What happens to a thread when you call Thread.Abort() in .NET 6?

7. How can you pass data to a method in a new thread?

8. How do you register a callback to be invoked when a cancellation is requested on
a thread?

2
Evolution of Multithreaded

Programming in .NET

As .NET and C# have evolved over the last 20 years, new and innovative approaches to multithreaded
programming have been introduced. C# has added new language features to support asynchronous
programming, and .NET Framework and .NET Core have added new types to support the languages.
The most impactful improvements were introduced with C# 5 and .NET Framework 4.0 when Microsoft
added the Task Parallel Library (TPL), thread-safe collections, and the async and await keywords.

This chapter will introduce concepts and features that will be explored in greater depth in subsequent
chapters. These concepts include the .NET thread pool, asynchronous programming with async and
await, concurrent collections, and parallelism. We will start by discovering when and why threading
features were added to .NET and C#. Then, we will create some practical examples of how to use the
new concepts. Finally, we will wrap up the chapter by discussing when it makes sense to use these
new features in your own projects. It is important to select the best tool for every real-world scenario.

In this chapter, you will learn about the following:

• .NET threading through the years

• Beyond threading basics

• Introduction to parallelism

• Introduction to concurrency

• Basics of async and await

• Choosing the right path forward

By the end of this chapter, you will have learned how your options have expanded when selecting how
to approach concurrency in your .NET applications.

Evolution of Multithreaded Programming in .NET28

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for
Windows users:

• Visual Studio 2022 version 17.0 or later.

• .NET 6.

• To use the WorkingWithTimers project, you will need to install the Visual Studio workload
for .NET desktop development.

While these are recommended, if you have .NET 6 installed, you can use your preferred editor. For
example, Visual Studio 2022 for Mac on macOS 10.13 or later, JetBrains Rider, or Visual Studio Code
will work just as well.

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter02.

Let’s start the chapter with a .NET and C# history lesson.

.NET threading through the years
Working with threads in .NET and C# has undergone much evolution since .NET Framework 1.0
and C# 1.0 were introduced in 2002. Most of the concepts discussed in Chapter 1, regarding the
System.Threading.Thread objects have been available since those early days of .NET. While
the Thread object is still available in .NET 6 and can be useful for simple scenarios, there are more
elegant and modern solutions that are available today.

This section will highlight when the most impactful parallelism and concurrency features were added.
We will begin by skipping ahead 8 years to 2010.

C# 4 and .NET Framework 4.0

In 2010, Microsoft released Visual Studio 2010 alongside C# 4 and .NET Framework 4.0. While some
earlier language and framework features such as generics, lambda expressions, and anonymous
methods would help facilitate later threading features, these 2010 releases were the most significant
for threading since 2002. .NET Framework included the following features that will be explored in
more detail in the subsequent sections and chapters:

• Thread-safe collections: This collection was added to the System.Collections.
Concurrent namespace to provide safe access to collections of data in multithreaded code.

• Parallel class: This provided support for parallel loops via Parallel.For and Parallel.
ForEach and for invoking parallel operations with Parallel.Invoke.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter02
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter02
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter02

.NET threading through the years 29

• Parallel LINQ (PLINQ): This exposed a parallel implementation of the LINQ
operations with extensions such as AsParallel, WithCancellation, and
WithDegreeOfParallelism.

We will cover these features in the Introduction to concurrency and Introduction to parallelism sections.
Next, we will learn about the important threading features that were included in .NET and C# two
years later.

C# 5 and 6 and .NET Framework 4.5.x

In 2012, Microsoft released what could be considered the most important feature for modern
multithreaded programming with .NET: asynchronous programming with async and await. The
async and await keywords were added to C# 5 in the same release when .NET Framework 4.5
added the TPL. The centerpiece of the TPL was the Task class in the new System.Threading.
Tasks namespace.

The Task object returns from an async operation, providing a way for developers to check the status
of the operation or wait for its completion. The work of an async task is performed on a background
thread on the thread pool, rather than in the main thread. We will learn more about thread pools in
the Beyond threading basics section. The basics of the TPL will be discussed in the Basics of async and
await section of this chapter and in more depth in Chapter 5.

Some tooling and language features related to async programming were added in the following years.
In 2013, .NET Framework 4.5.1 was released. This release corresponded to the release of Visual Studio
2013, which added async debugging features to the Call Stack and Tasks windows. The C# 6 and
Visual Studio 2015 releases added the ability for developers to await asynchronous operations in the
catch and finally blocks of exception handlers.

The next features came in 2017 with Microsoft’s continued shift from .NET Framework to .NET Core.

C# 7.x and .NET Core 2.0

The second major version of .NET Core released by the .NET team included the new ValueTask
and ValueTask<TResult> types. A ValueTask type is a structure that wraps a Task or an
IValueTaskSource instance and includes some additional fields. It is only available when using
C# 7.0 or later. The ValueTask type was added because many async operations, in practice, complete
synchronously but still incur the overhead of allocating a Task instance to return to the caller. In
these cases, performance can be improved by replacing Task with ValueTask, which does not
incur any allocation when completing its work synchronously. To read more about the motivation
behind the introduction of ValueTask and when to use it, you can read the following blog post
by Stephen Toub of the .NET team: https://devblogs.microsoft.com/dotnet/
understanding-the-whys-whats-and-whens-of-valuetask/.

https://devblogs.microsoft.com/dotnet/understanding-the-whys-whats-and-whens-of-valuetask/
https://devblogs.microsoft.com/dotnet/understanding-the-whys-whats-and-whens-of-valuetask/

Evolution of Multithreaded Programming in .NET30

Note
If you are not familiar with Stephen Toub, he is a Partner Software Engineer for Microsoft
and works as a developer on the .NET Team. His work on the .NET team was key in bringing
async, await, and the TPL to the .NET developer community. You can read some of his other
articles on the .NET Parallel Programming blog at https://devblogs.microsoft.
com/pfxteam/author/toub/.

C# 7.0 also introduced discards to the language. A discard in C# is represented by a single underscore
character (_) to replace an intentionally unused variable. A standalone discard replaces the need for
a declared variable to hold the Task instance returned by an async call. By using a discard in this
scenario, it signals to the compiler explicitly that you want to ignore the returned Task instance.
Discards can be used as placeholders for variables in other scenarios, too. Using discards can make the
intent of your code clearer and, in some cases, reduce memory allocation. You can read more about
their use on the Microsoft Docs website at https://docs.microsoft.com/dotnet/
csharp/fundamentals/functional/discards.

Later in 2017, C# 7.1 was released, adding a feature of note for async programming: the ability to
declare the Main method of a class as async. This made it possible to await other async methods
directly from the Main method.

The next async features of note came along in 2019 with C# 8.

C# 8 and .NET Core 3.0

When C# 8 and .NET Core 3.0 were released in 2019, several languages and .NET features were added
to support the new async streams feature. As the name implies, async streams allow developers to use
the new IAsyncEnumerable type to provide a streaming source of asynchronous data.

Let’s examine a code snippet that uses IAsyncEnumerable:

public async IAsyncEnumerable<Order>

 GetLargeOrdersForCustomerAsync(int custId)

{

 await foreach (var order in

 GetOrdersByCustomerAsync(custId))

 {

 if (order.Items.Count > 10) yield return order;

 }

}

https://devblogs.microsoft.com/pfxteam/author/toub/
https://devblogs.microsoft.com/pfxteam/author/toub/
https://docs.microsoft.com/dotnet/csharp/fundamentals/functional/discards
https://docs.microsoft.com/dotnet/csharp/fundamentals/functional/discards

Beyond threading basics 31

In this example, the new await foreach language feature is used to call an async method to get
all the orders for a customer. It then uses a yield return operation to return each order object
with more than 10 items via the IAsyncEnumerable type as it is processed. We will cover some
more real-world scenarios of using IAsyncEnumerable in Chapter 5.

The other async feature added in C# 8 was the System.IAsyncDisposable interface. When
implementing IAsyncDisposable, your class must implement a parameterless DisposeAsync
method. If your class consumes managed resources that implement IAsyncDisposable,
and they cannot be disposed of in line with an async using block, you should implement
IAsyncDisposable and clean up these resources in a protected DisposeAsyncCore
method. For a comprehensive example that uses both IDisposable and IAsyncDisposable,
you can review the Microsoft Docs example at https://docs.microsoft.com/dotnet/
standard/garbage-collection/implementing-disposeasync#implement-
both-dispose-and-async-dispose-patterns.

This brings us to the most recent releases of C# and .NET. Let’s review what’s new for async developers
in these 2021 releases.

C# 10 and .NET 6

.NET 6 was released in November 2021 along with C# 10. One of the new features in .NET 6 was the
ability of System.Text.Json to serialize and deserialize an IAsyncEnumerable type. Prior
to .NET 6, a serialized IAsyncEnumerable type would contain an empty JSON object. This is
considered a breaking change in .NET 6, but it is a change for the better. The primary motivation
behind the change was to support IAsyncEnumerable<T> responses in the ASP.NET Core
MVC controller methods.

The other .NET 6 feature of note for async developers is that the C# project templates in Visual Studio
2021 were modernized to leverage several recent language features, including the async Main
method available in C# 7.1 and later. The .NET team blogged about these updated templates when .NET
6 release candidate 2 was released in October 2021: https://devblogs.microsoft.com/
dotnet/announcing-net-6-release-candidate-2/#net-sdk-c-project-
templates-modernized.

This should give you an idea of when each of the significant threading features was added to C# and
.NET, and it sets the stage for the upcoming sections of this chapter, where we will cover some of
the basics of parallel programming and concurrency. Let’s begin by looking at some more features of
threading, starting with the .NET thread pool.

Beyond threading basics
Before we introduce parallel programming, concurrency, and async programming with .NET and C#,
we have a few more threading concepts to cover. The most important of these is the .NET managed
thread pool, which is used by awaited method calls that execute asynchronously in C#.

https://docs.microsoft.com/dotnet/standard/garbage-collection/implementing-disposeasync#implement-both-dispose-and-async-dispose-patterns
https://docs.microsoft.com/dotnet/standard/garbage-collection/implementing-disposeasync#implement-both-dispose-and-async-dispose-patterns
https://docs.microsoft.com/dotnet/standard/garbage-collection/implementing-disposeasync#implement-both-dispose-and-async-dispose-patterns
https://devblogs.microsoft.com/dotnet/announcing-net-6-release-candidate-2/#net-sdk-c-project-templates-modernized
https://devblogs.microsoft.com/dotnet/announcing-net-6-release-candidate-2/#net-sdk-c-project-templates-modernized
https://devblogs.microsoft.com/dotnet/announcing-net-6-release-candidate-2/#net-sdk-c-project-templates-modernized

Evolution of Multithreaded Programming in .NET32

Managed thread pool

The ThreadPool class in the System.Threading namespace has been part of .NET since
the beginning. It provides developers with a pool of worker threads that they can leverage to perform
tasks in the background. In fact, that is one of the key characteristics of thread pool threads. They are
background threads that run at the default priority. When one of these threads completes its task, it
is returned to the pool of available threads to await its next task. You can queue as many tasks to the
thread pool as the available memory will support, but the number of active threads is limited by the
number that the operating system can allocate to your application, based on the processor capacity
and other running processes.

If you were to use the ThreadPool class in a .NET 6 application, you would typically do so through the
TPL, but let’s explore how it can be used directly with ThreadPool.QueueUserWorkItem. The
following code takes the example scenario of Chapter 1, but uses a ThreadPool thread to perform the
background process:

Console.WriteLine("Hello, World!");

ThreadPool.QueueUserWorkItem((o) =>

{

 for (int i = 0; i < 20; i++)

 {

 bool isNetworkUp = System.Net.NetworkInformation.

 NetworkInterface.GetIsNetworkAvailable();

 Console.WriteLine($"Is network available? Answer:

 {isNetworkUp}");

 Thread.Sleep(100);

 }

});

for (int i = 0; i < 10; i++)

{

 Console.WriteLine("Main thread working...");

 Task.Delay(500);

}

Console.WriteLine("Done");

Console.ReadKey();

Beyond threading basics 33

Here, the key differences are that there is no need to set IsBackground to true, and you do
not call Start(). The process will start either as soon as the item is queued on ThreadPool or
when the next ThreadPool becomes available. While you might not explicitly use ThreadPool
frequently in your code, it is leveraged by many of the common threading features in .NET. So, it’s
important to have some understanding of how it works.

One of the common .NET features that use ThreadPool is timers.

Threading and timers

In this section, we will examine two timer classes that use ThreadPool, System.Timers.
Timer and System.Threading.Timer. Both of these types are safe to use with managed
threading and are available on every platform supported by .NET 6.

Note
Some additional timers are only applicable to either web or Windows platform development.
This section will focus on the timers that are platform agnostic. To read more about the other
timers, you can refer to the documentation on the Microsoft Docs website at https://
docs.microsoft.com/dotnet/standard/threading/timers.

System.Timers.Timer

You are probably most familiar with the Timer object in the System.Timers namespace. This
timer will raise an Elapsed event on a thread pool thread at the interval specified in the Interval
property. The mechanism can be stopped or started by using the Boolean Enabled property. If you
need the Elapsed event to only fire once, the AutoReset property can be set to false.

Note
To follow along with the code in this example, download the code from the WorkingWithTimers
project of this chapter’s GitHub repository: https://github.com/PacktPublishing/
Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.
NET-6/tree/main/chapter02.

This example uses a Timer object to check for new messages and alert a user if any
are found:

1. Start by declaring a Timer object and setting it up in an InitializeTimer method:

private System.Timers.Timer? _timer;

private void InitializeTimer()

{

https://docs.microsoft.com/dotnet/standard/threading/timers
https://docs.microsoft.com/dotnet/standard/threading/timers
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter02
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter02
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter02

Evolution of Multithreaded Programming in .NET34

 _timer = new System.Timers.Timer

 {

 Interval = 1000

 };

 _timer.Elapsed += _timer_Elapsed;

}

2. Next, create the _timer_Elapsed event handler to check for messages and update the users:

private void _timer_Elapsed(object? sender,

 System.Timers.ElapsedEventArgs e)

{

 int messageCount = CheckForNewMessageCount();

 if (messageCount > 0)

 {

 AlertUser(messageCount);

 }

}

3. After the _timer object has its Enabled property set to true, the Elapsed event will
fire every second. In the WorkingWithTimers project, the state is being controlled by the
StartTimer() and StopTimer() methods in the TimerSample class:

public void StartTimer()

{

 if (_timer == null)

 {

 InitializeTimer();

 }

 if (_timer != null && !_timer.Enabled)

 {

 _timer.Enabled = true;

 }

}

public void StopTimer()

{

 if (_timer != null && _timer.Enabled)

Beyond threading basics 35

 {

 _timer.Enabled = false;

 }

}

4. Run the WorkingWithTimers project and try using the Start Timer and Stop Timer buttons.

You should see messages in Visual Studio’s debug Output window appearing every second
while the timer is enabled.

Note
Remember that timer events are firing on a thread pool thread. The code executing in these
methods might not have access to update the UI. These timer examples are part of a Windows
Forms (WinForms) project. The most common way to update the UI with WinForms is by
checking InvokeRequired on the form or user control and then updating the UI with the
Invoke method, if necessary. More information about how to update a WinForms UI can be
found on the Microsoft Docs website at https://docs.microsoft.com/dotnet/
desktop/winforms/controls/how-to-make-thread-safe-calls.

In your own applications, you would use the AlertUser method to present an alert message to the
user or update a notification icon in the UI. Next, let’s try the System.Threading.Timer class.

System.Threading.Timer

Now, we will create the same example with the System.Threading.Timer class. This Timer
class must be initialized a little differently:

Note
To follow along with the code in this example, download the code from the WorkingWithTimers
project of this chapter’s GitHub repository: https://github.com/PacktPublishing/
Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.
NET-6/tree/main/chapter02.

1. Start by creating a new InitializeTimer method:

private void InitializeTimer()

{

 var updater = new MessageUpdater();

 _timer = new System.Threading.Timer(

 callback: new TimerCallback(TimerFired),

 state: updater,

https://docs.microsoft.com/dotnet/desktop/winforms/controls/how-to-make-thread-safe-calls
https://docs.microsoft.com/dotnet/desktop/winforms/controls/how-to-make-thread-safe-calls
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter02
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter02
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter02

Evolution of Multithreaded Programming in .NET36

 dueTime: 500,

 period: 1000);

}

The constructor for the Timer class takes four parameters. The callback parameter is a
delegate to invoke on the thread pool when the timer period elapses. The state parameter
is an object to pass to the callback delegate. The dueTime parameter tells the timer
how long (in milliseconds) to wait before triggering the timer for the first time. Finally,
the period parameter specifies the interval (in milliseconds) between each delegate
invocation.

2. After instantiating the timer, it will immediately start. There is no Enabled property to start or
stop this timer. When you are done with it, you should dispose of it with either the Dispose
method or the DisposeAsync method. This is happening in our DisposeTimerAsync
method:

public void StartTimer()

{

 if (_timer == null)

 {

 InitializeTimer();

 }

}

public async Task DisposeTimerAsync()

{

 if (_timer != null)

 {

 await _timer.DisposeAsync();

 }

}

3. MessageUpdater is a class that is used as the state object provided to the TimerCallback
method. It has a single method that handles updates to the message count. The logic to update
the user about new messages can be encapsulated by this class. In our case, it will simply update
the debug output with the number of new messages:

internal class MessageUpdater

{

 internal void Update(int messageCount)

 {

 Debug.WriteLine($"You have {messageCount} new

Introduction to parallelism 37

 messages!");

 }

}

4. The final piece to examine is the TimerFired callback method:

private void TimerFired(object? state)

{

 int messageCount = CheckForNewMessageCount();

 if (messageCount > 0 &&

 state is MessageUpdater updater)

 {

 updater.Update(messageCount);

 }

}

Similar to the _timer_Elapsed method from the previous example, this method
simply checks for new messages and triggers an update. However, this time, the update
is performed by the MessageUpdater class, which, in your application, could be
abstracted through an IMessageUpdater interface and injected into this class for
improved separation of concerns and testability.

5. Try this example by using the Start Threading Timer and Stop Threading Timer buttons in
the application. You should see a debug message appearing with new message counts in the
Output window, as you did in the previous example.

The two timers serve similar purposes; however, most of the time, you will want to use System.
Threading.Timer to leverage its async nature. However, if you need to frequently stop and start
your timer processes, the System.Timers.Timer class is a better choice.

Now that we have covered some additional managed threading concepts to level-set your
knowledge, it’s time to shift gears and introduce the concept of parallel programming
with C#.

Introduction to parallelism
While exploring the history of threading in C# and .NET, we learned that parallelism was introduced
to developers in .NET Framework 4.0. In this section, the aspects that will be explored are exposed
in the TPL through the System.Threading.Tasks.Parallel class. In addition, we will
cover some of the basics of PLINQ through examples. These data parallelism concepts will be covered
in greater detail with real-world examples in Chapter 6, Chapter 7, and Chapter 8.

Evolution of Multithreaded Programming in .NET38

At a high level, parallelism is the concept of executing multiple tasks in parallel. These tasks could
be related to one another, but this is not a requirement. In fact, related tasks running in parallel run
a greater risk of encountering synchronization issues or blocking one another. For example, if your
application loads order data from an orders service and user preferences and application state from an
Azure blob store, these two processes can be run in parallel without having to worry about conflicts
or data synchronization. On the other hand, if the application is loading order data from two different
order services and combining the results in a single collection, you will need a synchronization strategy.

That type of scenario will be discussed, in greater depth, in Chapter 9. In this section, we will
prepare for those advanced scenarios by learning some uses of the Parallel class. Let’s start with
Parallel.Invoke.

Using Parallel.Invoke

Parallel.Invoke is a method that can execute multiple actions, and they could be executed in
parallel. There is no guarantee of the order in which they will execute. Each action will be queued in
the thread pool. The Invoke call will return when all the actions have been completed.

In this example, the Parallel.Invoke call will execute four actions: another method in the
ParallelInvokeExample class named DoComplexWork, a lambda expression, an Action
declared inline, and a delegate. Here is the complete ParallelInvokeExample class:

internal class ParallelInvokeExample

{

 internal void DoWorkInParallel()

 {

 Parallel.Invoke(

 DoComplexWork,

 () => {

 Console.WriteLine($"Hello from lambda

 expression. Thread id:

 {Thread.CurrentThread.ManagedThreadId}");

 },

 new Action(() =>

 {

 Console.WriteLine($"Hello from Action.

 Thread id: {Thread.CurrentThread

 .ManagedThreadId}");

 }),

 delegate ()

Introduction to parallelism 39

 {

 Console.WriteLine($"Hello from delegate.

 Thread id: {Thread.CurrentThread

 .ManagedThreadId}");

 }

);

 }

 private void DoComplexWork()

 {

 Console.WriteLine($"Hello from DoComplexWork

 method. Thread id: {Thread.CurrentThread

 .ManagedThreadId}");

 }

}

Creating a new instance of ParallelInvokeExample and executing DoWorkInParallel
from a console application will produce an output similar to the following, although the order of
operations may vary:

Figure 2.1 – Output produced by the DoWorkInParallel method

Evolution of Multithreaded Programming in .NET40

In the next section, we will learn how to implement a Parallel.ForEach loop and discuss when
you might want to leverage it.

Using Parallel.ForEach

Parallel.ForEach is probably the most used member of the Parallel class in .NET. This is
because, in many cases, you can simply take the body of a standard foreach loop and use it inside
a Parallel.ForEach loop. However, when introducing any parallelism into a code base, you
must be sure that the code being invoked is thread-safe. If the body of a Parallel.ForEach loop
modifies any of the collections, you will either need to employ one of the synchronization methods
discussed in Chapter 1, or use one of .NET’s concurrent collections. We will introduce concurrent
collections in the Introduction to concurrency section.

As an example of using Parallel.ForEach, we will create a method that accepts a list of numbers
and checks whether each number is contained in a string representation of the current time:

internal void ExecuteParallelForEach(IList<int> numbers)

{

 Parallel.ForEach(numbers, number =>

 {

 bool timeContainsNumber = DateTime.Now.

 ToLongTimeString().Contains(number.ToString());

 if (timeContainsNumber)

 {

 Console.WriteLine($"The current time contains

 number {number}. Thread id: {Thread.

 CurrentThread.ManagedThreadId}");

 }

 else

 {

 Console.WriteLine($"The current time does not

 contain number {number}. Thread id:

 {Thread.CurrentThread.ManagedThreadId}");

 }

 });

}

Introduction to parallelism 41

Here is the call to ExecuteParallelForEach from the console application’s Main method:

var numbers = new List<int> { 1, 3, 5, 7, 9, 0 };

var foreachExample = new ParallelForEachExample();

foreachExample.ExecuteParallelForEach(numbers);

Execute the program, and examine the console output. You should see that more than one thread
was used to process the loop:

Figure 2.2 – Console output from a Parallel.ForEach loop

Next, we will wrap up this section on parallelism in .NET with an introduction to PLINQ.

Basics of Parallel LINQ

This section will look at one of the simplest ways to add some parallelism to your code. By adding
the AsParallel method to your LINQ query, you can transform it into a PLINQ query, with the
operations after AsParallel being executed on the thread pool when necessary. There are many
factors to consider when deciding when to use PLINQ. We will discuss those in some depth in Chapter
8. For this example, we will introduce PLINQ inside a LINQ Where clause that checks whether
each given integer is an even number. To help illustrate how PLINQ can impact sequences, Task.
Delay is also introduced. Here is the complete ParallelLinqExample class implementation:

internal void ExecuteLinqQuery(IList<int> numbers)

{

 var evenNumbers = numbers.Where(n => n % 2 == 0);

Evolution of Multithreaded Programming in .NET42

 OutputNumbers(evenNumbers, "Regular");

}

internal void ExecuteParallelLinqQuery(IList<int> numbers)

{

 var evenNumbers = numbers.AsParallel().Where(n =>

 IsEven(n));

 OutputNumbers(evenNumbers, "Parallel");

}

private bool IsEven(int number)

{

 Task.Delay(100);

 return number % 2 == 0;

}

private void OutputNumbers(IEnumerable<int> numbers, string

 loopType)

{

 var numberString = string.Join(",", numbers);

 Console.WriteLine($"{loopType} number string:

 {numberString}");

}

In the Main method of your console application, add some code to pass a list of integers to both the
ExecuteLinqQuery and ExecuteParallelLinqQuery methods:

var linqNumbers = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7,

 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 };

var linqExample = new ParallelLinqExample();

linqExample.ExecuteLinqQuery(linqNumbers);

linqExample.ExecuteParallelLinqQuery(linqNumbers);

Introduction to concurrency 43

Examine the output, and you should see that the order of the numbers in the PLINQ sequence
has changed:

Figure 2.3 – Console output of the LINQ and PLINQ queries

We will explore more aspects of parallelism over several chapters in Part 2, Parallel Programming and
Concurrency with C#, of this book. Let’s shift gears and learn about some concurrency patterns in C#.

Introduction to concurrency
So, what is concurrency and how does it relate to parallelism in the context of C# and .NET? The
terms are frequently used interchangeably, and if you think about it, they do have similar meanings.
When multiple threads are executing in parallel, they are running concurrently. In this book, we will
use the term concurrency when discussing patterns to follow when designing for managed threading.
Additionally, we will discuss concurrency in the context of the concurrent collections that were
introduced to .NET developers in .NET Framework 4.0. Let’s start by learning about the concurrent
collections in the System.Collections.Concurrent namespace.

.NET has several collections that have been created with thread safety built-in. These collections can
all be found in the System.Collections.Concurrent namespace. In this section, we will
introduce five of the collections. The remaining three are variations of Partitioner. These will be
explored in Chapter 9, where we will work with each of the collection types through practical examples.

Evolution of Multithreaded Programming in .NET44

Note
While your code does not require the use of locks when using concurrent collections, different
techniques for synchronization are being employed inside these collections. Some of them do
use locking, while others have retry mechanisms to deal with contention. To read more about
how concurrent collections handle contention, check out this Microsoft blog post on the .NET
Parallel Programming blog: https://devblogs.microsoft.com/pfxteam/
faq-are-all-of-the-new-concurrent-collections-lock-free/.

The first collection we will introduce is ConcurrentBag<T>.

ConcurrentBag<T>

The ConcurrentBag<T> collection is a concurrent collection intended to hold a collection of
unordered objects. Duplicate values are allowed, as are null values when T is a nullable type. It makes
an excellent thread-safe replacement for an array, List<T>, or other IEnumerable<T> instances
where the ordering of items is not a requirement.

Internally, ConcurrentBag<T> stores a linked list of items for each thread adding items. As
items are taken or peeked at from the collection, priority will be given to the internal list, which had
items added by the current thread. Let’s suppose thread 1 adds items A, B, and C and thread 2 adds
items D, E, F, and G. If thread 1 calls TryPeek or TryTake four times, ConcurrentBag<T>
will get items from the A, B, and C list first before taking items from the linked list containing items
from thread 2.

The following list details the properties and methods of ConcurrentBag<T> that you are likely
to use in most implementations:

• Add(T): This adds an object to the bag.

• TryPeek(out T): This tries to fetch a value from the bag with an out parameter but
does not remove that item.

• TryTake(out T): This attempts to fetch a value from the bag with an out parameter
and removes it.

• Clear(): This clears all of the objects from the bag.

• Count: This returns the number of objects in the bag.

• IsEmpty: This returns a bool value indicating whether the bag is empty.

• ToArray(): This returns an array of objects of type T.

The ConcurrentBag<T> collection has two constructors. One constructor takes no parameters
and simply creates a new empty bag. The other accepts an IEnumerable<T> type of object to be
copied to the new bag.

https://devblogs.microsoft.com/pfxteam/faq-are-all-of-the-new-concurrent-collections-lock-free/
https://devblogs.microsoft.com/pfxteam/faq-are-all-of-the-new-concurrent-collections-lock-free/

Introduction to concurrency 45

Next, let’s take a quick look at the ConcurrentQueue<T> collection.

ConcurrentQueue<T>

The .NET ConcurrentQueue<T> collection is similar in implementation to its thread-unsafe
counterpart, Queue<T>. As such, it makes a great replacement for Queue<T> when managed
threading is introduced to an existing code base. ConcurrentQueue<T> is a strongly typed list
of objects that enforces first in, first out (FIFO) logic, which is the definition of a queue.

Note
FIFO logic is commonly seen in the manufacturing industry and in warehouse management
software. When working with perishable goods, it is important to use your oldest raw materials
first. Therefore, those pallets of goods that were the first to be put into the warehouse should
be the first to be pulled when a pallet of that type is requested by the system.

These are the commonly used members of the ConcurrentQueue<T> type:

• Enqueue(T): This adds a new object to the queue.

• TryPeek(out T): This attempts to get the object at the front of the queue without removing it.

• TryDequeue(out T): This tries to get the object at the front of the queue and removes it.

• Clear(): This clears the queue.

• Count: This returns the number of objects in the queue.

• IsEmpty: This returns a bool value indicating whether the queue is empty.

• ToArray(): This returns the objects in the queue as an array of type T.

Similar to the ConcurrentBag<T> collection, the ConcurrentQueue<T> collection has two
constructors: one parameterless and one that takes an Ienumerable<T> type to populate the new
queue. Next, let’s introduce a similar collection: ConcurrentStack<T>.

ConcurrentStack<T>

ConcurrentStack<T> can be thought of as ConcurrentQueue<T>, but it uses last in, first
out (LIFO), or stack, logic instead of FIFO. The operations it supports are similar, but it has a Push
method instead of Enqueue, and removing items uses a TryPop method instead of TryDequeue.
Another advantage of the ConcurrentStack<T> collection is that it can add or remove multiple
objects in one operation. These range operations are supported by using the PushRange and
TryPopRange methods. The range operations take arrays of T as parameters.

ConcurrentStack<T> and ConcurrentQueue<T> in .NET 6 both implement the
IReadOnlyCollection<T> interface. This means that once the collection has been created,

Evolution of Multithreaded Programming in .NET46

it is read-only and cannot be reassigned or set to null. You can only add or remove items or use
Clear() to empty the collection.

Let’s move on to one of the most powerful concurrent collections, BlockingCollection<T>.

BlockingCollection<T>

BlockingCollection<T> is a thread-safe collection of objects that implements
several interfaces, including IProducerConsumerCollection<T> . The
IProducerConsumerCollection<T> interface provides a set of members intended to
support applications that need to implement the producer/consumer pattern.

Note
The producer/consumer pattern is a concurrency design pattern where a set of data is concurrently
fed by one or more producer threads. At the same time, there are one or more consumer threads
monitoring and fetching the data being produced to consume and process it concurrently. The
BlockingCollection<T> collection is the data store in this producer/consumer pattern.
You can read more about producer/consumer on Wikipedia at https://en.wikipedia.
org/wiki/Producer%E2%80%93consumer_problem.

BlockingCollection<T> has several methods and properties that assist in a producer/
consumer workflow. You can indicate that the producer process is done adding items to the collection
by calling the CompleteAdding method. Once this method is called, no more items can be added
to the collection with the Add or TryAdd methods. If you plan to use CompleteAdding in
your workflow, it is best to always use TryAdd and check the Boolean result when adding objects
to the collection. If the collection has been marked as complete for adding, calling Add will throw
InvalidOperationException. Additionally, you can check the IsAddingCompleted
property to find out whether CompleteAdding has already been called.

Items are removed from BlockingCollection<T> by a consumer process with the Take or
TryTake methods. Again, it is safer to use TryTake to avoid any exceptions when the collection is
empty. If CompleteAdding has been called and all objects have been removed from the collection,
the IsCompleted property will return true.

We will walk through a real-world producer/consumer implementation in Chapter 9 .NET. Now,
let’s move on to our final concurrent collection in this section, ConcurrentDictionary<T>.

https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem

Basics of async and await 47

ConcurrentDictionary<TKey, TValue>

As you have probably guessed, ConcurrentDictionary<TKey, TValue> is a great
replacement for Dictionary<TKey, TValue> when working with managed threading. Both
collections implement the IDictionary<TKey, TValue> interface. The concurrent version
of this collection adds the following methods for working with data concurrently:

• TryAdd: This tries to add a new key/value pair to the dictionary and returns a Boolean value
indicating whether the object was successfully added to the dictionary. If the key already exists,
the method will return false.

• TryUpdate: This operation passes a key along with the existing and new values for the item.
It will update the existing item to the new value if it exists in the dictionary with the existing
value provided. The Boolean value that is returned indicates whether the object was successfully
updated in the dictionary.

• AddOrUpdate: This method will add or update an item in the dictionary based on whether
the key exists and uses an update delegate to perform any logic based on the current and new
values for the item.

• GetOrAdd: This method will add an item if the key does not already exist. If it does exist,
the existing value is returned.

These are the most important and common concurrent collections in .NET to understand. We will
cover some examples of each and learn about more of the collections in System.Collections.
Concurrent later, but this section should provide a solid base for understanding what is to come.

In the next section, we will introduce the C# async and await keywords that were added to C# 5.0.

Basics of async and await
When the TPL was introduced in .NET Framework 4.5, C# 5.0 also added language support for
task-based asynchronous programming with the async and await keywords. This immediately
became the default method of implementing asynchronous workflows in C# and .NET. Now, 10 years
later, async/await and the TPL have become an integral part of building robust, scalable .NET
applications. You might be wondering why it is so important to adopt async programming in your
applications.

Understanding the async keyword

There are many reasons for writing async code. If you’re writing server-side code on a web server,
using async allows the server to handle additional requests while your code is awaiting a long-running
operation. On a client application, freeing the UI thread to perform other operations with async code
allows your UI to remain responsive to users.

Evolution of Multithreaded Programming in .NET48

Another important reason to adopt async programming in .NET is that many third-party and open
source libraries are using async/await. Even .NET itself is exposing more APIs as async in every
release, especially those involving IO operations: networking, file, and database access.

Let’s try writing your first async method with C#.

Writing an async method

Creating and consuming an async method is easy. Let’s try a simple example with a new console
application:

1. Create a new console application in Visual Studio and name it AsyncConsoleExample.

2. Add a class to the project, named NetworkHelper, and add the following methods to the class:

internal async Task CheckNetworkStatusAsync()

{

 Task t = NetworkCheckInternalAsync();

 for (int i = 0; i < 8; i++)

 {

 Console.WriteLine("Top level method

 working...");

 await Task.Delay(500);

 }

 await t;

}

private async Task NetworkCheckInternalAsync()

{

 for (int i = 0; i < 10; i++)

 {

 bool isNetworkUp = System.Net.

 NetworkInformation.NetworkInterface

 .GetIsNetworkAvailable();

 Console.WriteLine($"Is network available?

 Answer: {isNetworkUp}");

 await Task.Delay(100);

 }

}

Basics of async and await 49

There are a few things to point out in the preceding code. Both methods have an async
modifier, indicating that they will be awaiting some work and will run asynchronously.
Inside the methods, we are using the await keyword with the calls to Task.Delay.
This will ensure that no code after this point will execute until the awaited method has been
completed. However, during this time, the active thread can be released to perform other
work elsewhere.

Finally, look at the call to NetworkCheckInternalAsync. Instead of awaiting this
call, we are capturing the returned Task instance in a variable named t, and we don’t
await it until after the for loop. This means that the for loops in both methods will
run concurrently. If we had, instead, awaited NetworkCheckInternalAsync,
its for loop would have been completed before the for loop in
CheckNetworkStatusAsync could begin.

3. Next, replace the code in Program.cs with the following:

using AsyncConsoleExample;

Console.WriteLine("Hello, async!");

var networkHelper = new NetworkHelper();

await networkHelper.CheckNetworkStatusAsync();

Console.WriteLine("Main method complete.");

Console.ReadKey();

We are awaiting the call to CheckNetworkStatusAsync. This is possible because the
default Main method in a .NET 6 console application is async by default. If you try to
await something in a method that is not marked as async, you will get a compiler error.
We will explore some of the options you can use when you must call async methods from
existing non-async code in Chapter 5.

4. Finally, run the application and examine the output:

Evolution of Multithreaded Programming in .NET50

Figure 2.4 – Console output for the async sample application

As expected, capturing the async method’s result allowed the two loops to run concurrently. Try
awaiting the call to NetworkCheckInternalAsync and see how the output changes. You
should see that all the output from the private method will appear before the output from the for
loop in CheckNetworkStatusAsync begins.

This was a brief introduction to the world of async programming with C#. We’ll be working with it
quite a lot throughout the rest of this book. Let’s wrap things up by discussing how to choose which
of these options to leverage when building a new project or enhancing an existing application.

Choosing the right path forward
Now that you have been introduced to some advanced managed threading concepts, parallel
programming, concurrent collections, and the async/await paradigm, let’s discuss how they all fit
together in the real world. Choosing the right path forward with multithreaded development in .NET
will usually involve more than one of these concepts.

When working with .NET 6, you should usually choose to create async methods in your projects.
The reasons discussed in this chapter are compelling. Asynchronous programming keeps both client
and server applications responsive, and async is used extensively throughout .NET itself.

Summary 51

Some of the Parallel class operations can be leveraged when your code needs to process a set of
items quickly and the underlying code doing the processing is thread-safe. This is one place where
concurrent collections can be introduced. If any parallel or async operations are manipulating shared
data, the data should be stored in one of the .NET concurrent collections.

If you are working with existing code, often, the most prudent path is to limit how much multithreaded
code is added. Legacy projects such as these are a great place to incrementally add some ThreadPool
or Parallel operations and test the results. It is important to test the application functionally and
for performance. Performance testing tools for managed threading will be covered in Chapter 10.

This preliminary guidance will help you get an idea of where you can boost your applications’
performance with managed threading. We will build on your learning and this guidance throughout
the rest of the book. Let’s wrap up and discuss what you have learned in this chapter.

Summary
In this chapter, we started by looking at a brief history of C#, .NET, and managed threading. We discussed
how Microsoft has added features for asynchronous and parallel programming over the last 20 years.
Next, we took a tour of parallel programming with .NET, concurrent collections, and asynchronous
development with C#. Finally, we examined when you might choose each of these concepts for your
own applications and why you will often choose more than one of them. You will be able to take what
you learned in this chapter and start thinking about practical applications of managed threading in your
day-to-day work.

In the next chapter, we will take what you have learned so far and discuss some of the best practices
for the practical application of the concepts.

Questions
1. Which class in .NET manages the thread pool threads available to your application?

2. In which version of C# were the async and await keywords introduced?

3. In which version of .NET was the TPL introduced?

4. In which version of .NET Core was IAsyncEnumerable introduced?

5. What type should every async method return?

6. Which concurrent collection would you choose to replace Dictionary<TKey, TValue>
in a multithreaded scenario?

7. Which concurrent collection is frequently used with the producer/consumer design pattern
in .NET?

8. Which parallel feature in .NET features the AsParallel method?

3
B e s t P r a c t i c e s f o r M a n a g e d

T h r e a d i n g

When building applications that leverage parallelism and concurrency, developers need to be aware
of some best practices regarding integrating managed threading concepts. This chapter will assist in
this capacity. We will cover important concepts such as working with static data, avoiding deadlocks,
and exhausting managed resources. These are all areas that can lead to unstable applications and
unexpected behavior.

In this chapter, you will learn the following concepts:

• Handling static objects

• Managing deadlocks and race conditions

• Threading limits and other recommendations

By the end of this chapter, you will have the knowledge to avoid the most common managed
threading pitfalls.

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for
Windows developers:

• Visual Studio 2022 version 17.0 or later

• .NET 6

Best Practices for Managed Threading54

While these are recommended, if you have .NET 6 installed, you can use your preferred editor. For
example, Visual Studio 2022 for Mac on macOS 10.13 or later, JetBrains Rider, or Visual Studio Code
will work just as well.

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter03.

We will get started by discussing some best practices for handling static data in .NET.

Handling static objects
When working with static data in .NET, there are some important things to understand when it comes
to managed threading.

Static data and constructors

One important item to understand about accessing static data from managed threads relates to
constructors. Before a static member of any class can be accessed, its static constructor must first
finish running. The runtime will block thread execution until the static constructor has run to ensure
that all required initialization has finished.

If you are using static objects within your own code base, you will know which classes have static
constructors and can control the complexity of the logic inside them. When the static data is outside
of your control, inside a third-party library or .NET itself, things may not be so clear.

Let’s try a quick example to illustrate the potential delays that can be encountered in this scenario.

1. Start by creating a new .NET console application in Visual Studio named
ThreadingStaticDataExample.

2. Add a new class to the project named WorkstationState with the following static members:

internal static string Name { get; set; }

internal static string IpAddress { get; set;}

internal static bool IsNetworkAvailable { get; set; }

internal static DateTime? NetworkConnectivity

 LastUpdated { get; set; }

static WorkstationState()

{

 Name = Dns.GetHostName();

 IpAddress = GetLocalIPAddress(Name);

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter03
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter03
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter03

Handling static objects 55

 IsNetworkAvailable = NetworkInterface

 .GetIsNetworkAvailable();

 NetworkConnectivityLastUpdated = DateTime.UtcNow;

 Thread.Sleep(2000);

}

private static string GetLocalIPAddress

 (string hostName)

{

 var hostEntry = Dns.GetHostEntry(hostName);

 foreach (var address in hostEntry.AddressList

 .Where(a => a.AddressFamily ==

 AddressFamily.InterNetwork))

 {

 return address.ToString();

 }

 return string.Empty;

}

This class will hold some information about the current workstation, including the
host name, local IP address, and whether the network is currently available. The private
GetLocalIpAddress method fetches the local IP based on a provided host name.

There is a static constructor for WorkstationState that sets the initial property data
and injects a delay of two seconds with a Thread.Sleep call. This will help us simulate
the application fetching some other network information that takes some time to retrieve on
a slow network connection.

3. Next, add a class named WorkstationHelper. This class will contain an async method to
update the static IsNetworkAvailable and NetworkConnectivityLastUpdated
properties in WorkstationState and return the value of IsNetworkAvailable
to the caller:

internal async Task<bool> GetNetworkAvailability()

{

 await Task.Delay(100);

 WorkstationState.IsNetworkAvailable =

 NetworkInterface.GetIsNetworkAvailable();

 WorkstationState.NetworkConnectivityLastUpdated =

 DateTime.UtcNow;

Best Practices for Managed Threading56

 return WorkstationState.IsNetworkAvailable;

}

There is also a Task.Delay call being awaited if you would like to call this in a loop and
experiment by varying the injected delay.

4. Finally, update Program.cs to call GetNetworkAvailability and update the
console output with the connectivity, host name, and IP address:

using ThreadingStaticDataExample;

Console.WriteLine("Hello, World!");

Console.WriteLine($"Current datetime:

 {DateTime.UtcNow}");

var helper = new WorkstationHelper();

await helper.GetNetworkAvailability();

Console.WriteLine($"Network availability last updated

 {WorkstationState.NetworkConnectivityLastUpdated}

 for computer {WorkstationState.Name} at IP

 {WorkstationState.IpAddress}");

5. Run the program and examine the output. You can see that there is a two second delay between
the times in the two Console.WriteLine calls injected by the static constructor:

Hello, World!

Current datetime: 2/12/2022 4:07:13 PM

Network availability last updated 2/12/2022 4:07:15 PM for
computer ALVINASHCRABC3A at IP 10.211.55.3

Static constructors are one aspect of static data to keep in mind when working with managed threading.
A more common issue is controlling concurrent read/write access to static objects across threads.

Controlling shared access to static objects

When it comes to static data, the best practice is to avoid using it whenever possible. In general, it
makes your code less testable, less scalable, and more prone to unexpected behavior when working with
concurrency. However, there are times when static data cannot be avoided. You may be working with
a legacy code base, where refactoring the code to remove statics can be risky or too large an effort to
undertake. Static classes can also be useful when data rarely changes, or when the classes are stateless.

For cases where static objects are unavoidable, some precautions can be taken. Let’s review some of
them and discuss the merits of each, starting with locking mechanisms.

Handling static objects 57

Locks

In Chapter 1, we discussed some strategies for locking objects for shared use. Locks are even more
important when working with static variables because of the chance of concurrent access increases
with the increased scope of the object.

The simplest way of preventing concurrent access to an object from multiple threads is to enclose any
code that accesses it with a lock. Let’s modify the code in WorkstationHelper to prevent multiple
calls to GetNetworkActivity from writing to WorkstationState properties concurrently:

internal class WorkstationHelper

{

 private static object _workstationLock = new object();

 internal async Task<bool> GetNetworkAvailability()

 {

 await Task.Delay(100);

 lock(_workstationLock)

 {

 WorkstationState.IsNetworkAvailable =

 NetworkInterface.GetIsNetworkAvailable();

 WorkstationState.NetworkConnectivityLastUpdated

 = DateTime.UtcNow;

 }

 return WorkstationState.IsNetworkAvailable;

 }

}

We have added a private static _workstationLock object, and we are using it as part of the lock
block enclosing the writes to WorkstationState properties. If GetNetworkAvailability
were now used in a Parallel.ForEach or some other concurrent operation, only one thread
could enter that lock block at a time.

You can use any of the locking mechanisms that were discussed in Chapter 1. Choose the feature
that works best for your scenario. Another .NET feature you can leverage with static members is the
ThreadStatic attribute.

ThreadStatic attribute

The ThreadStatic attribute can be added to a static field to indicate that a separate static instance
of the object should be created for each thread. The ThreadStatic attribute should only be used
when this is the desired behavior, and it is well documented in your code. It can produce unexpected
results when used improperly.

Best Practices for Managed Threading58

Fields marked as ThreadStatic should not have their data initialized in a constructor, as the
initialization will only apply to the current thread. The value on all other threads will be null or the
default value for that type.

If you applied the ThreadStatic attribute to the NetworkConnectivityLastUpdated
property of WorkstationState and call WorkstationHelper.
GetNetworkAvailability thirty times in a Parallel.For loop, the value read in
Program.cs at the end may or may not be the last value written to one of the static instances.
The variable in Program.cs will contain the last value written from the main thread inside the
Parallel.For loop.

1. To t r y i t f o r y o u r s e l f , a d d t h e T h r e a d S t a t i c a t t r i b u t e t o
NetworkConnectivityLastUpdated and make it an internal field instead of a
property. The attribute cannot be applied to properties:

[ThreadStatic]

internal static DateTime?

 NetworkConnectivityLastUpdated;

2. Then update Program.cs to use a Parallel.For loop:

using ThreadingStaticDataExample;

Console.WriteLine("Hello, World!");

Console.WriteLine($"Current datetime:

 {DateTime.UtcNow}");

var helper = new WorkstationHelper();

Parallel.For(1, 30, async (x) =>

{

 await helper.GetNetworkAvailability();

});

Console.WriteLine($"Network availability last updated

 {WorkstationState.NetworkConnectivityLastUpdated}

 for computer {WorkstationState.Name} at IP

 {WorkstationState.IpAddress}");

The time between the date/time values in the output will now vary each time you run the program
because the final value written to the console may not be the final value across all threads.

Handling static objects 59

While ThreadStatic should be applied only in scenarios where instances per thread are necessary,
another pattern similar in application to statics is the singleton. Let’s discuss the use of singletons in
a multithreaded application.

Working with singletons

The singleton pattern is an object design pattern that only allows a single instance of itself to be
created. This design pattern is one of the most common and is known by most .NET developers.
Every mainstream dependency injection (DI) framework allows registered types to be registered
as singletons. The container will only create one instance for each of these types, providing the same
instances every time the type is requested.

We can manually create a singleton for our WorkstationState with a lock and a little extra
code. This is the WorkstationStateSingleton:

public class WorkstationStateSingleton

{

 private static WorkstationStateSingleton?

 _singleton = null;

 private static readonly object _lock = new();

 WorkstationStateSingleton()

 {

 Name = Dns.GetHostName();

 IpAddress = GetLocalIPAddress(Name);

 IsNetworkAvailable =

 NetworkInterface.GetIsNetworkAvailable();

 NetworkConnectivityLastUpdated =

 DateTime.UtcNow;

 }

 public static WorkstationStateSingleton Instance

 {

 get

 {

 lock (_lock)

 {

 if (_singleton == null)

 {

 _singleton = new

Best Practices for Managed Threading60

 WorkstationStateSingleton();

 }

 return _singleton;

 }

 }

 }

...

}

The complete implementation of the class can be found in the GitHub repository referenced in the
Technical requirements section of this chapter. Look at the ThreadingStaticDataExample
in the chapter3 folder.

There are two steps taken to make this a singleton. First, the constructor is private so only the
WorkstationStateSingleton can create an instance of itself. Second, a static Instance
method is created. It returns the _singleton instance of itself if it is not null. Otherwise, it
creates the instance to return. Surrounding this code with the _lock ensures that the instances are
not created twice on different concurrent threads.

A singleton presents the same challenges as a static class. All shared data should be protected by locks
if they can be accessed concurrently by managed threads. The added challenge with singletons that are
registered in a DI container is that a lock object, Mutex, or another mechanism must be declared
at the same scope as the container. This will ensure that all data that can potentially use the singleton
can also enforce the same lock.

Note
Please note that the use of singletons is generally not considered a good practice today. For this
reason, many developers consider them an anti-pattern. However, it is important to understand
them and how existing singletons in your code may be impacted by multithreaded code.

Deadlocks are one of the pitfalls of aggressive locking. Aggressive locking is when you are locking
uses of an object in many parts of the code that could be executing in parallel. In the next section, we
will discuss deadlocks and race conditions in managed threading.

Managing deadlocks and race conditions
As with many tools at a developer’s disposal, misusing features of managed threading can have adverse
impacts on your applications at runtime. Deadlocks and race conditions are two scenarios that can
be created because of multithreaded programming:

Managing deadlocks and race conditions 61

• A deadlock happens when multiple threads are trying to lock the same resource and as a result,
cannot continue executing.

• Race conditions happen when multiple threads are proceeding toward updating a particular
routine, and a correct outcome is dependent on the order in which they execute it.

Figure 3.2 – Two threads in contention for the same resources, causing a deadlock

First, let’s discuss deadlocks and some techniques for avoiding them.

Mitigating deadlocks

It is critical to avoid deadlocks in your applications. If one of the threads involved in a deadlock is
the application’s UI thread, it will cause the application to freeze. When only non-UI threads are
deadlocked, it can be harder to diagnose the problem. Deadlocked thread pool threads will prevent
an application from closing, but deadlocked background threads will not.

Well-instrumented code is essential in debugging problems when they occur in a production
environment. If the issue can be reproduced in your own development environment, stepping through
the code with the Visual Studio debugger is the fastest way to find the source of a deadlock. We will
discuss debugging techniques in detail in Chapter 10.

Best Practices for Managed Threading62

One of the easiest ways to create a deadlock is through recursion or nested methods that try to acquire
a lock on the same resource. Look at the following code:

private object _lock = new object();

private List<string> _data;

public DeadlockSample()

{

 _data = new List<string> { "First", "Second",

 "Third" };

}

public async Task ProcessData()

{

 lock (_lock)

 {

 foreach(var item in _data)

 {

 Console.WriteLine(item);

 }

 await AddData();

 }

}

private async Task AddData()

{

 lock (_lock)

 {

 _data.AddRange(GetMoreData());

 await Task.Delay(100);

 }

}

The ProcessData method is locking the _lock object and processing with _data. However, it
is calling AddData, which also tries to acquire the same lock. This lock will never become available,
and the process will be deadlocked. In this case, the problem is apparent. What if AddData is called
from multiple places or some Parallel.ForEach any loops are involved in the parent code? Some
of the parent code uses _data and acquire a lock, but some do not. This is a case where non-blocking
read locks in the ReaderWriterLockSlim can help prevent deadlocks.

Managing deadlocks and race conditions 63

Another way to prevent deadlocks is by adding a timeout to the lock attempt with Monitor.
TryEnter. In this example, the code will time out if a lock cannot be acquired within one second:

private void AddDataWithMonitor()

{

 if (Monitor.TryEnter(_lock, 1000))

 {

 try

 {

 _data.AddRange(GetMoreData());

 }

 finally

 {

 Monitor.Exit(_lock);

 }

 }

 else

 {

 Console.WriteLine($"AddData: Unable to acquire

 lock. Stack trace: {Environment.StackTrace}");

 }

}

Logging any failures to acquire locks can help to pinpoint possible sources of deadlocks in your code
so you can rework the code to avoid them.

Next, let’s examine how race conditions can occur in multithreaded applications.

Avoiding race conditions

A race condition occurs when multiple threads are reading and writing the same variables simultaneously.
Without any locks in place, the outcome can be wildly unpredictable. Some operations can be
overwritten by other parallel threads’ results. Even with locks in place, the order of two thread
operations can change the result. Here is a simple example without locks that performs some addition
and multiplication in parallel:

private int _runningTotal;

public void PerformCalculationsRace()

{

 _runningTotal = 3;

Best Practices for Managed Threading64

 Parallel.Invoke(() => {

 AddValue().Wait();

 }, () => {

 MultiplyValue().Wait();

 });

 Console.WriteLine($"Running total is {_runningTotal}");

}

private async Task AddValue()

{

 await Task.Delay(100);

 _runningTotal += 15;

}

private async Task MultiplyValue()

{

 await Task.Delay(100);

 _runningTotal = _runningTotal * 10;

}

We all know that when combining addition and multiplication, the order of operations is important.
If the two operations are processed sequentially, the two results could be either 180 or 45, but
if both AddValue and MultiplyValue read the initial value of 3 before performing their
respective operations, the last method to complete will write either 18 or 30 as the final value of
_runningTotal.

If you want to ensure that multiplication happens before addition, the PerformCalculations
method can be rewritten to use the ContinueWith method on the Task returned from
MultiplyValue:

public async Task PerformCalculations()

{

 _runningTotal = 3;

 await MultiplyValue().ContinueWith(async (Task) => {

 await AddValue();

 });

 Console.WriteLine($"Running total is {_runningTotal}");

}

Managing deadlocks and race conditions 65

This code will always multiply before adding and will always finish with _runningTotal equaling
45. Using async and await throughout the code ensures that the UI or service process remains
responsive while using threads from the thread pool as needed.

The Interlocked class discussed in the previous chapter can also be used to perform mathematic
operations on shared resources. Interlocked.Add and Interlocked.Exchange can
perform thread-safe operations on the _runningTotal variable in parallel. Here is the original
Parallel.Invoke example modified to use Interlocked methods with _runningTotal:

public class InterlockedSample

{

 private long _runningTotal;

 public void PerformCalculations()

 {

 _runningTotal = 3;

 Parallel.Invoke(() => {

 AddValue().Wait();

 }, () => {

 MultiplyValue().Wait();

 });

 Console.WriteLine($"Running total is

 {_runningTotal}");

 }

 private async Task AddValue()

 {

 await Task.Delay(100);

 Interlocked.Add(ref _runningTotal, 15);

 }

 private async Task MultiplyValue()

 {

 await Task.Delay(100);

 var currentTotal = Interlocked.Read(ref

 _runningTotal);

 Interlocked.Exchange(ref _runningTotal,

 currentTotal * 10);

 }

}

Best Practices for Managed Threading66

The two operations could still perform in different orders, but the uses of _runningTotal are
now locked and thread-safe. The Interlocked class is more efficient than using a lock statement and
will yield greater performance for simple changes like these.

It is important to guard all shared resources when performing concurrent operations in your code.
By creating a well-designed locking strategy, you will achieve the best possible performance while
maintaining thread safety in your application. Let’s finish up this chapter with some guidance around
threading limits.

Threading limits and other recommendations
So, it sounds like using multiple threads can really speed up your application’s performance. You
should probably start replacing all your foreach loops with Parallel.ForEach loop and
start calling all your services and helper methods on thread pool threads, right? Are there any limits
and what are they? Well, when it comes to threading, there absolutely are limits.

The number of threads that can execute simultaneously is limited by the number of processors and
processor cores on the system. There is no way around hardware limitations, as the CPU (or virtual
CPU when running on a virtual machine) can only run so many threads. In addition, your application
must share these CPUs with other processes running on the system. If your CPU has four cores, it is
actively running five other applications, and your program is trying to execute a process with multiple
threads, the system is not likely to accept more than one of your threads at a time.

The .NET thread pool is optimized to handle different scenarios based on the number of threads
available, but you can do some things to guard against taxing the system. Some parallel operations such
as Parallel.ForEach can limit how many threads the loop will try to use. You can provide a
ParallelOptions object to the operation and set the MaxDegreeOfParallelism option.
By default, the loop will use as many threads as the scheduler will provide.

You can ensure that the maximum does not exceed half the number of available cores on the system
with the following implementation:

public void ProcessParallelForEachWithLimits

 (List<string> items)

{

 int max = Environment.ProcessorCount > 1 ?

 Environment.ProcessorCount / 2 : 1;

 var options = new ParallelOptions

 {

 MaxDegreeOfParallelism = max

 };

 Parallel.ForEach(items, options, y => {

Threading limits and other recommendations 67

 // Process items

 });

}

PLINQ operations can also limit the max degree of parallelism with the WithDegreeOfParallelism
extension method:

public bool ProcessPlinqWithLimits(List<string> items)

{

 int max = Environment.ProcessorCount > 1 ?

 Environment.ProcessorCount / 2 : 1;

 return items.AsParallel()

 .WithDegreeOfParallelism(max)

 .Any(i => CheckString(i));

}

private bool CheckString(string item)

{

 return !string.IsNullOrWhiteSpace(item);

}

An application can also adjust the thread pool maximum values, if necessary. By calling
ThreadPool.SetMaxThreads, you can change the maximum values for workerThreads
and completionPortThreads. completionPortThreads is the number of async I/O
threads on the thread pool. It is usually not required to change these values, and there are some limits
to the values you can set. The maximum cannot be set to less than the number of cores on the system
or less than the current minimum values on the thread pool. You can query the current minimums
with ThreadPool.GetMinThreads. Here is an example of how to safely set the maximum
thread values to values greater than the current minimums:

private void UpdateThreadPoolMax()

{

 ThreadPool.GetMinThreads(out int workerMin, out int

 completionMin);

 int workerMax = GetProcessingMax(workerMin);

 int completionMax = GetProcessingMax(completionMin);

 ThreadPool.SetMaxThreads(workerMax, completionMax);

}

private int GetProcessingMax(int min)

Best Practices for Managed Threading68

{

 return min < Environment.ProcessorCount ?

 Environment.ProcessorCount * 2 :

 min * 2;

}

There are some other general guidelines to follow regarding the number of threads to assign to an
operation in your application. Try to avoid assigning multiple threads to operations that share a
resource. For example, if you have a service that logs activity to a file, you should not assign more than
one background worker to do the logging. The blocking file I/O operations will prevent the second
thread from writing until the first one is complete. You are not gaining any efficiency in this case.

If you find yourself adding extensive locking to objects in your application, you are either using too
many threads or the task distribution needs to be changed to reduce contention for resources. Try
to divide threaded task responsibility by the types of data being consumed. You might have many
parallel tasks calling services to fetch data, but only one or two threads are needed to process the data
once it is returned.

You may have heard the term thread starvation. This usually happens when too many threads
are blocking or waiting for resources to become available. There are some common scenarios where
this happens:

• Locks: There are too many threads competing for the same locked resources. Analyze your
code to determine how to reduce contention.

• No async/await: When working with ASP.NET Core, all controller methods should be
marked as async. This allows the webserver to serve other requests while yours are waiting
for operations to complete.

• Too much threading: Creating too many thread pool threads will result in more idle threads
waiting to be processed. It also increases the likelihood of thread contention and starvation.

Avoid these practices, and .NET will do its best to manage the thread pool to serve your application
and others on the system.

Finally, do not use Thread.Suspend and Thread.Resume trying to control the sequence
of operations across multiple threads. Instead, leverage other techniques discussed in this chapter,
including locking mechanisms and Task.ContinueWith.

We have covered plenty of best practices for managed threading in this chapter. Let’s wrap up by
reviewing what we have learned.

Summary 69

Summary
In this chapter, we discussed some best practices to follow when working with managed threads in
C# and .NET. We started by creating some examples of how to manage and process static data in a
multithreaded application. The examples illustrated how to leverage locks, work with singletons, and
how static constructors can impact performance when working with static data. Next, we explored
some techniques for avoiding deadlocks and race conditions. Both pitfalls can be avoided if you design
your algorithms to minimize the need for locking. Finally, we looked at some features of .NET that
can adjust the limits of several parallel and thread pool operations.

At this point, you are well prepared to start using managed threads responsibly in your .NET projects.
For some further reading on best practices with managed threading, you can check out some
recommendations on Microsoft Docs: https://docs.microsoft.com/en-us/dotnet/
standard/threading/managed-threading-best-practices.

In the next chapter, Chapter 4, you will learn how to leverage parallelism and concurrency to keep your
application responsive and pick up some best practices for updating the UI from a non-UI thread.

Questions
1. Which design pattern models how to create an object that only has one instance?

2. What .NET attribute will cause a static field to have one instance per thread?

3. What is a threading deadlock?

4. Which method on the Monitor class can be used to specify a timeout when trying to access
a locked resource?

5. Which lightweight class can be used to lock value types for atomic operations?

6. Which thread-safe operation can be used to add two integers?

7. What option can be set on a Parallel.For or Parallel.ForEach loop to limit the
number of threads used?

8. How can you limit the number of threads used in a PLINQ query?

9. What is the name of the method to find the current minimum thread values on the thread pool?

https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices
https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices

4
User Interface Responsiveness

and Threading

One of the main reasons to introduce threading concepts to a project is the desire to keep an application
responsive to user input. Accessing data through services, a database, or the filesystem can introduce
delays, and the user interface (UI) should remain responsive. The real-world examples in this chapter
will provide valuable options for ensuring UI responsiveness in your .NET client applications.

In this chapter, we will do the following:

• Leveraging background threads

• Using the thread pool

• Updating the UI thread without exceptions

By the end of this chapter, you will understand how to take advantage of parallelism and concurrency
to keep your client applications responsive and performant.

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for
Windows users:

• Visual Studio 2022 version 17.0 or later

• .NET 6

User Interface Responsiveness and Threading72

While these are recommended, if you have .NET 6 installed, you can use your preferred editor. For
example, Visual Studio 2022 for Mac on macOS 10.13 or later, JetBrains Rider, or Visual Studio Code
will work just as well.

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-
10-and-.NET-6/tree/main/chapter04.

Let’s get started by discussing how background threads can be used to perform non-critical tasks
without impacting UI performance.

Leveraging background threads
In Chapter 1, we learned how to create background threads and discussed some of their uses. Background
threads have a lower priority than the primary thread of the process and other thread pool threads.
In addition, active background threads will not prevent the user or the system from terminating
the application.

This means that background threads are perfect for tasks such as the following:

• Writing log and analytics data

• Monitoring network or filesystem resources

• Reading data into the application

Do not use background threads for critical application operations such as the following:

• Saving application state

• Performing database transactions

• Application data processing

A good rule to follow when deciding whether some work can be processed by a background thread is to
ask yourself whether abruptly interrupting the work to close the application would risk the data integrity
of the system. So, how do you know whether you are creating a background or foreground thread?

Which threads are background threads?

We have learned that a thread can be explicitly created as a background thread by setting its
IsBackground property to true. All other threads created by calling a Thread constructor
are foreground threads by default. The application’s primary (or main) thread is a foreground thread.
All ThreadPool threads are background threads. This includes all asynchronous operations started
by the Task Parallel Library (TPL).

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter04
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter04
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter04

Leveraging background threads 73

So, if all task-based operations such as async methods are executing on background threads, should
you avoid using them for saving important application data? Will .NET allow your application to
close while these async / await operations are in process? If there is a foreground thread awaiting
an async operation, the application will not terminate until the operation is complete. If you do
not use await, or you start an operation on the thread pool with Task.Run, it is possible for the
application to terminate normally before the actions have finished.

The great thing about using await with your async methods is the flexibility you gain in controlling
the flow of execution while keeping the UI responsive. Let’s discuss async and await in client
applications and create an example of a Windows Presentation Foundation (WPF) application that
loads data from multiple sources.

Using async, await, tasks, and WhenAll

Using async and await in your code is the easiest way to introduce some background work using
ThreadPool. An asynchronous method must be decorated with the async keyword and will
return a System.Threading.Tasks.Task type instead of a void return.

Note
Async methods return Task so the calling method can await the result of the method. If
you were to create an async method with a void return type, it could not be awaited, and
the calling code would continue processing subsequent code before the async method had
completed. It is important to note that only event handlers should be declared as async with
a void return type.

If the method returns string, then the async equivalent will return a Task<string> generic
type. Let’s look at examples of each:

private async Task ProcessDataAsync()

{

 // Process data here

}

private async Task<string> GetStringDataAsync()

{

 string stringData;

 // Build string here

 ...

 return stringData;

}

User Interface Responsiveness and Threading74

When you call an async method, there are two common patterns to follow.

• First, you can await the call and set the return type to a variable of the type returned inside
the method:

await ProcessDataAsync();

string data = await GetStringDataAsync();

• The second option is to use Task variables when invoking the methods and await them later:

Task dataTask = ProcessDataAsync();

Task<string> stringDataTask = GetStringDataAsync();

DoSomeOtherSynchronousWork();

string data = await stringDataTask;

await dataTask;

Using this second method, the application can execute some synchronous work while the two
async methods continue to run on background threads. Once the synchronous work is complete,
the application will await the two async methods.

Let’s put our async knowledge to work in a more realistic sample project. In this example, we will
create a new Windows client application with WPF that loads data from two async methods. We
will simulate slow service calls to fetch the data in these methods by injecting non-blocking delays
with Task.Delay. Each method will take several seconds to return its data, but the UI will remain
responsive to user input:

1. Start by creating a new WPF project in Visual Studio. Name the project AwaitWithWpf.

2. Add two new classes to the project named Order and MainViewModel. Your solution
should now look something like this:

Figure 4.1 – The AwaitWithWpf solution in Visual Studio

Leveraging background threads 75

3. Next, open NuGet Package Manager, search for MVVM Toolkit on the Browse tab, and
add the latest stable version of the Microsoft.Toolkit.Mvvm package to your project:

Figure 4.2 – Adding the Microsoft.Toolkit.Mvvm package to the project

We will be using the MVVM Toolkit to add Model-View-ViewModel (MVVM)
functionality to our MainViewModel class.

Note
The MVVM Toolkit is an open source MVVM library that is part of the Windows Community
Toolkit maintained by Microsoft. If you are unfamiliar with the MVVM pattern or the MVVM
Toolkit, you can read more about them on Microsoft Docs: https://docs.microsoft.
com/windows/communitytoolkit/mvvm/introduction.

4. Now, open the Order class and add the following implementation:

public class Order

{

 public int OrderId { get; set; }

 public string? CustomerName { get; set; }

 public bool IsArchived { get; set; }

}

This will provide a few properties to display for each order when the order list is populated
on MainWindow.

5. Now we will start to build the MainViewModel implementation. The first step is to add a
list of orders to bind to the UI and a command to execute when we want to load the orders:

public class MainViewModel : ObservableObject

{

 private ObservableCollection<Order> _orders =

 new();

 public MainViewModel()

 {

 LoadOrderDataCommand = new AsyncRelayCommand

 (LoadOrderDataAsync);

 }

https://docs.microsoft.com/windows/communitytoolkit/mvvm/introduction
https://docs.microsoft.com/windows/communitytoolkit/mvvm/introduction

User Interface Responsiveness and Threading76

 public ICommand LoadOrderDataCommand { get; set; }

 public ObservableCollection<Order> Orders

 {

 get { return _orders; }

 set

 {

 SetProperty(ref _orders, value);

 }

 }

 private async Task LoadOrderDataAsync()

 {

 // TODO – Add code to load orders

 }

}

Let’s review a few of the properties of the MainViewModel class before moving on to the
next step:

• The MainViewModel class inherits from the ObservableObject type provided by
the MVVM Toolkit.

• This base class implements the INotifyPropertyChanged interface, which is used by
WPF data binding to notify the UI when data-bound property values change.

• The Orders property will provide the list of orders to the UI through WPF data binding.
Calling SetProperty on the ObservableObject base sets the value of the _orders
backing variable and triggers a property change notification.

• The LoadOrderDataCommand property will be executed by a button on MainWindow.
In the constructor, the property is being initialized as a new AsyncRelayCommand that
calls LoadOrderDataAsync when the command is invoked by the UI.

6. Don’t forget to add the necessary using statements to the class:

using Microsoft.Toolkit.Mvvm.ComponentModel;

using Microsoft.Toolkit.Mvvm.Input;

using System.Collections.Generic;

using System.Collections.ObjectModel;

using System.Threading.Tasks;

using System.Windows.Input;

7. Next, let’s create two async methods to load order data. One will create current orders and
the other will create a list of archived orders. These are differentiated by the IsArchived

Leveraging background threads 77

property on the Order class. Each method uses Task.Delay to simulate a service call
across a slow internet or network connection:

private async Task<List<Order>> GetCurrentOrders

 Async()

{

 var orders = new List<Order>();

 await Task.Delay(4000);

 orders.Add(new Order { OrderId = 55, CustomerName

 = "Tony", IsArchived = false });

 orders.Add(new Order { OrderId = 56, CustomerName

 = "Peggy", IsArchived = false });

 orders.Add(new Order { OrderId = 60, CustomerName

 = "Carol", IsArchived = false });

 orders.Add(new Order { OrderId = 62, CustomerName

 = "Bruce", IsArchived = false });

 return orders;

}

private async Task<List<Order>> GetArchivedOrders

 Async()

{

 var orders = new List<Order>();

 await Task.Delay(5000);

 orders.Add(new Order { OrderId = 3, CustomerName =

 "Howard", IsArchived = true });

 orders.Add(new Order { OrderId = 18, CustomerName

 = "Steve", IsArchived = true });

 orders.Add(new Order { OrderId = 19, CustomerName

 = "Peter", IsArchived = true });

 orders.Add(new Order { OrderId = 21, CustomerName

 = "Mary", IsArchived = true });

 orders.Add(new Order { OrderId = 25, CustomerName

 = "Gwen", IsArchived = true });

 orders.Add(new Order { OrderId = 34, CustomerName

 = "Harry", IsArchived = true });

 orders.Add(new Order { OrderId = 36, CustomerName

 = "Bob", IsArchived = true });

User Interface Responsiveness and Threading78

 orders.Add(new Order { OrderId = 49, CustomerName

 = "Bob", IsArchived = true });

 return orders;

}

8. Now we need to create a synchronous ProcessOrders method that combines the two lists
of orders and updates the Orders property with the full dataset:

private void ProcessOrders(List<Order> currentOrders,

 List<Order> archivedOrders)

{

 List<Order> allOrders = new(currentOrders);

 allOrders.AddRange(archivedOrders);

 Orders = new ObservableCollection<Order>

 (allOrders);

}

9. The final step in building the MainViewModel class is the most important. Add the following
implementation to the LoadOrderDataAsync method:

private async Task LoadOrderDataAsync()

{

 Task<List<Order>> currentOrdersTask =

 GetCurrentOrdersAsync();

 Task<List<Order>> archivedOrdersTask =

 GetArchivedOrdersAsync();

 List<Order>[] results = await Task.WhenAll(new

 Task<List<Order>>[] {

 currentOrdersTask, archivedOrdersTask

 }).ConfigureAwait(false);

 ProcessOrders(results[0], results[1]);

}

This method calls GetCurrentOrdersAsync and GetArchivedOrdersAsync
and captures each in a Task<List<Order>> variable. You could simply await each call
and store the returned orders in List<Order> variables. However, that would mean the
second method would not start executing until the first one completed. By awaiting Task.
WhenAll instead, the methods can execute in parallel on background threads.

Leveraging background threads 79

If your methods all return the same data type, you can capture the results of Task.
WhenAll in an array of the return type. In our case, we are receiving the two lists of orders
in an array of List<Order> and passing the two array values to ProcessOrders.

10. Now, let’s move on to the MainWindow.xaml.cs code-behind file. Add the following
code to set DataContext of MainWindow in the constructor after the call to
InitializeComponent:

public MainWindow()

{

 InitializeComponent();

 var vm = new MainViewModel();

 DataContext = vm;

}

DataContext is the source for all Binding references in the XAML for
MainWindow. We will create the XAML for our UI in the next step.

11. The last file to update is MainWindow.xaml. Open the XAML file and start by adding two
rows to Grid. The first row will contain another Grid containing Button and TextBox.
The second row will contain ListView to display the list of orders. We’ll create a template
for the orders in a moment:

<Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <Grid Grid.Row="0" Margin="4">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <Button Content="Load Data" Grid.Column="0"

 Margin="2" Width="200"

 Command="{Binding Path=LoadOrderData

 Command}"/>

 <TextBox Grid.Column="1" Margin="2"/>

 </Grid>

 <ListView Grid.Row="1" ItemsSource="{Binding

 Path=Orders}" Margin="4">

User Interface Responsiveness and Threading80

 </ListView>

</Grid>

I have highlighted the two data binding instances in the XAML markup. The Command of
Button is bound to the LoadOrderDataCommand property, and ItemsSource
of ListView is bound to the Orders property. Setting ItemsSource will make the
properties of the Order class available to the members of ListView.ItemTemplate.

12. Let’s add ItemTemplate to ListView next. Defining DataTemplate within
ItemTemplate defines the structure of each item within ListView:

<ListView Grid.Row="1" ItemsSource="{Binding

 Path=Orders}" Margin="4">

 <ListView.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="2">

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Order Id:"

 Margin="2,2,0,2"

 Width="100"/>

 <TextBox IsReadOnly="True"

 Width="200"

 Text="{Binding

 Path=OrderId}" Margin="2"/>

 </StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Customer:"

 Margin="2,2,0,2"

 Width="100"/>

 <TextBox IsReadOnly="True"

 Width="200"

 Text="{Binding

 Path=CustomerName}"

 Margin="2"/>

 </StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Archived:"

 Margin="2,2,0,2"

 Width="100"/>

Leveraging background threads 81

 <TextBox IsReadOnly="True"

 Width="200"

 Text="{Binding

 Path=IsArchived}"

 Margin="2"/>

 </StackPanel>

 </StackPanel>

 </DataTemplate>

 </ListView.ItemTemplate>

</ListView>

Each Order instance will render as a StackPanel containing three horizontally
aligned StackPanel elements, displaying labels and values for the OrderId,
CustomerName, and IsArchived data-bound properties.

13. We’re ready to run the application and see how things work. After the program starts, click the
Load Data button. It will take about 5 seconds to load the data to ListView. While you wait,
try typing some text into the box to the right of the Load Data button. You can see that the UI
remains responsive to user input thanks to async/await and the Task.WhenAll method.
Once the data has finished loading, you should see a list of twelve orders in the scrollable list:

Figure 4.2 – Viewing a list of orders in the AsyncWithWpf application

User Interface Responsiveness and Threading82

In a real production application, the implementations of the two async methods would be replaced
by service calls to fetch data from a database or web services. Regardless of how long it takes to return
and populate the data, other parts of the UI will remain responsive to user input. One change you
would want to make is adding an indicator to the UI to inform the user that data is being loaded. You
should also disable the Load Data button while the data load process is active to prevent multiple
calls to LoadOrderDataAsync.

The example illustrates the benefits of using async and await in a Windows application. These
async calls are using ThreadPool within the TPL. Let’s look at some other ways to leverage
ThreadPool in a Windows application.

Using the thread pool
There are other ways to use ThreadPool threads in a .NET application. Let’s discuss a situation
where you want to accomplish the same result that was achieved with async and await in the
previous example, but the methods to fetch the order data are not marked as async. One option
is to update the methods to be async. If that code is not within your control to change, you have
some other options available.

The ThreadPool class has a method called QueueUserWorkItem. This method accepts a
method to call and queues it for execution on the thread pool. We could use it with our project like this:

ThreadPool.QueueUserWorkItem(GetCurrentOrders);

There are a few problems with using this method. The primary issue is that there is no return value
to get the list of orders from the method call. You could work around this issue with some wrapper
methods that update a shared thread-safe collection such as the BlockingCollection. That
isn’t a great design, and there is a better option.

The QueueUserWorkItem method was more commonly used before the introduction of the TPL.
In today’s task-based world, you can use Task.Run to execute a synchronous method as async.
Let’s update our WPF project to use Task.Run:

1. The only file that needs to be modified to use Task.Run is MainViewModel. Start by
updating GetCurrentOrdersAsync and GetArchivedOrdersAsync to no
longer be async methods. They should also be renamed as GetCurrentOrders and
GetArchivedOrders so consumers are aware that they are not async methods:

private List<Order> GetCurrentOrders()

{

 var orders = new List<Order>();

 Thread.Sleep(4000);

 orders.Add(new Order { OrderId = 55, CustomerName

Using the thread pool 83

 = "Tony", IsArchived = false });

 orders.Add(new Order { OrderId = 56, CustomerName

 = "Peggy", IsArchived = false });

 orders.Add(new Order { OrderId = 60, CustomerName

 = "Carol", IsArchived = false });

 orders.Add(new Order { OrderId = 62, CustomerName

 = "Bruce", IsArchived = false });

 return orders;

}

private List<Order> GetArchivedOrders()

{

 var orders = new List<Order>();

 Thread.Sleep(5000);

 orders.Add(new Order { OrderId = 3, CustomerName =

 "Howard", IsArchived = true });

 orders.Add(new Order { OrderId = 18, CustomerName

 = "Steve", IsArchived = true });

 orders.Add(new Order { OrderId = 19, CustomerName

 = "Peter", IsArchived = true });

 orders.Add(new Order { OrderId = 21, CustomerName

 = "Mary", IsArchived = true });

 orders.Add(new Order { OrderId = 25, CustomerName

 = "Gwen", IsArchived = true });

 orders.Add(new Order { OrderId = 34, CustomerName

 = "Harry", IsArchived = true });

 orders.Add(new Order { OrderId = 36, CustomerName

 = "Bob", IsArchived = true });

 orders.Add(new Order { OrderId = 49, CustomerName

 = "Bob", IsArchived = true });

 return orders;

}

The changes are minimal, and I have highlighted them in the preceding source code. The
async modifier has been removed from the method declarations, the methods have been
renamed and they no longer return tasks, and Task.Delay in each method has been
updated to Thread.Sleep.

User Interface Responsiveness and Threading84

2. Next, we will update the LoadOrderDataAsync method to call the synchronous methods
with Task.Run:

private async Task LoadOrderDataAsync()

{

 Task<List<Order>> currentOrdersTask =

 Task.Run(GetCurrentOrders);

 Task<List<Order>> archivedOrdersTask =

 Task.Run(GetArchivedOrders);

 List<Order>[] results = await Task.WhenAll(new

 Task<List<Order>>[] {

 currentOrdersTask, archivedOrdersTask

 }).ConfigureAwait(false);

 ProcessOrders(results[0], results[1]);

}

No other changes are necessary. Task.Run will return the same
Task<List<Order>> type, which can still be used with Task.WhenAll to wait for
their completion.

3. Run the program, and it should work exactly as it did before. The UI remains responsive while
the order data is loading.

This is an excellent way to start incorporating async and await into existing code, but always use
caution when adding threading to your applications. In this application, the two methods being called
do not access any shared data. So, there was no need to think about thread safety. If these methods
were updating a private collection of orders, you would need to introduce a locking mechanism or
use a thread-safe collection for the orders.

Before we move on to a discussion of the UI thread, there is one other Task method to discuss. The
Task.Factory.StartNew method is similar in use to Task.Run. In fact, you can use them
in the same way. This code uses Task.Run to get a Task with the current orders:

Task<List<Order>> currentOrdersTask = Task.Run

 (GetCurrentOrders);

This code does the same thing with Task.Factory.StartNew:

Task<List<Order>> currentOrdersTask = Task.Factory.StartNew

 (GetCurrentOrders);

In this case, you should use Task.Run. It is a newer method and is simply a shortcut meant to
simplify the most common use cases. The Task.Factory.StartNew method has some additional

Updating the UI thread without exceptions 85

overloads for specific uses. This example uses StartNew to call GetCurrentOrders with some
optional parameters:

Task<List<Order>> currentOrdersTask =

 Task.Factory.StartNew(GetCurrentOrders,

 CancellationToken.None,

 TaskCreationOptions.AttachedToParent,

 TaskScheduler.Default);

The interesting option we have provided here is TaskCreationOptions.AttachedToParent.
What this does is it links the task completion of the calling method to that of the child,
GetCurrentOrders. The default behavior is for their completions to be unlinked. For a complete
list of available overloads and their uses, you can review Microsoft Docs here: https://docs.
microsoft.com/dotnet/api/system.threading.tasks.taskfactory.
startnew.

Note
Stephen Toub of the .NET team has a blog post where he discusses Task.Run versus Task.
Factory.StartNew and why you might want to choose each option. You can read his
post on the .NET Parallel Programming blog here: https://devblogs.microsoft.
com/pfxteam/task-run-vs-task-factory-startnew/.

Now, let’s move on to discuss when you will need to write code to explicitly update the UI thread
from a background thread.

Updating the UI thread without exceptions
When working with managed threading in .NET applications, there are many pitfalls that developers
must learn to avoid. One of the common mistakes developers make is writing code that updates a UI
control in a Windows application from a non-UI thread. This kind of error will not be detected by
the compiler. Developers will receive a runtime error indicating that a control created on the main
thread cannot be modified on another thread.

So, how do you avoid these runtime errors? The best way to avoid them is by not updating UI controls
from background threads at all. WPF helps avoid the problem with the MVVM pattern and data
binding. Binding updates are automatically marshaled to the UI thread by .NET. You can safely update
properties in your ViewModel classes from a background thread without causing errors at runtime.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.taskfactory.startnew
https://docs.microsoft.com/dotnet/api/system.threading.tasks.taskfactory.startnew
https://docs.microsoft.com/dotnet/api/system.threading.tasks.taskfactory.startnew
https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/
https://devblogs.microsoft.com/pfxteam/task-run-vs-task-factory-startnew/

User Interface Responsiveness and Threading86

If you are updating UI controls directly in your code, either in a WinForms application or in the
code-behind file of a WPF control, you can use an Invoke call to push the execution to the main
thread. The implementation is slightly different between WinForms and WPF. Let’s start with a WPF
example. If you have a method performing some work on a background thread, and it needs to update
the Text property of a TextBox on a WPF window, you could wrap the code in an action:

Application.Current.Dispatcher.Invoke(new Action(() => {

 usernameTextBox.Text = "John Doe";

}));

Dispatcher.Invoke will push the execution to the main thread. Keep in mind that if the main
thread is busy with other work, your background thread will wait here for this action to complete. If your
background worker wants to fire and forget this action, you can use Dispatcher.BeginInvoke
instead.

Let’s assume we want to update usernameTextBox, but this time, we are working with a WinForms
project. The same invocation can be accomplished by using Form or UserControl executing
the code. This example is a WinForms application with two buttons. Clicking one button will call
the UpdateUsername method. The other button will call Task.Run(UpdateUsername),
putting it on a background thread. To determine whether Invoke is needed to access the main
thread, you check the Boolean InvokeRequired read-only property. It may not be required if
the thread pool chose to run Task on the main thread:

public partial class Form1 : Form

{

 public Form1()

 {

 InitializeComponent();

 }

 private void btnRunInBackground_Click(object sender,

 EventArgs e)

 {

 Task.Run(UpdateUsername);

 }

 private void btnRunOnMainThread_Click(object sender,

 EventArgs e)

 {

 UpdateUsername();

 }

 private void UpdateUsername()

Updating the UI thread without exceptions 87

 {

 var updateAction = new Action(() =>

 {

 usernameTextBox.Text = "John Doe";

 });

 if (this.InvokeRequired)

 {

 this.Invoke(updateAction);

 }

 else

 {

 updateAction();

 }

 }

}

The usernameTextBox will display the name John Doe successfully regardless of which button
is clicked:

Figure 4.3 – Updating a control on a WinForms form

Like WPF, WinForms has a BeginInvoke method if the background code does not need to wait
for the main thread update to complete. BeginInvoke can also accept an EndInvoke delegate
that will receive a callback when the main thread invocation has completed.

User Interface Responsiveness and Threading88

This section provided a great start on using .NET managed threading in your Windows client applications.
Let’s finish up with a summary of what we learned in this chapter.

Summary
In this chapter, we learned some useful techniques for improving client application performance. We
started by exploring some different uses of async and await in the ViewModel of a WPF application.
In that project, we saw that awaiting Task.WhenAll does not block the main thread, which keeps
the UI responsive to user input. We discussed how Task.Run and Task.Factory.StartNew
can be used to call synchronous code from asynchronous code, making it easier to introduce managed
threading to existing applications. We finished up the chapter by learning some techniques to update
the UI thread from other threads without causing exceptions at runtime.

You should be feeling more comfortable using async, await, and the TPL in your code after reading
this chapter. Try taking what you have learned here and start adding some async code to your own
client applications. For additional reading on async and await, you can check out this C# article
on Microsoft Docs: https://docs.microsoft.com/dotnet/csharp/async.

In the next chapter, we will dive even deeper into using async, await, and the TPL. We will take
some of the concepts from this chapter and expand on them while introducing some best practices.

Questions
1. What type should every async method return?

2. Which method can be used to await multiple tasks?

3. Which method to start a new task accepts TaskDispatcher as one of the parameters?

4. When calling an async method, what type of thread will execute the task?

5. What method should be used in a WPF application when updating a user control from a
background thread?

6. Which method should be used on a WinForms control to execute an action on the main thread
but not wait for the method to complete?

7. In WinForms, how can you check whether calling Invoke is necessary?

https://docs.microsoft.com/dotnet/csharp/async

Part 2:
Parallel

Programming and
Concurrency with C#

It’s time to dive deeper into the modern methods of parallel programming and concurrency
with C# and .NET 6. This part will explore some of the most common real-world practices
employed today.

This part contains the following chapters:

• Chapter 5, Asynchronous Programming with C#

• Chapter 6, Parallel Programming Concepts

• Chapter 7, Task Parallel Library (TPL) and Dataflow

• Chapter 8, Parallel Data Structures and Parallel LINQ (PLINQ)

• Chapter 9, Working with Concurrent Collections in .NET

5
Asynchronous Programming

with C#

The .NET task asynchronous programming (TAP) model, which uses the async and await
keywords, was introduced in .NET Framework 4.5. The C# language’s support for these keywords
was released at the same time in C# 5. Now, a decade later, the TAP model is an integral part of most
.NET developers’ toolsets.

This chapter will explain asynchronous programming in C#, explore how to use Task objects, and
delve into best practices of using async and await for I/O-bound and CPU-bound scenarios
with .NET.

In this chapter, you will learn about the following:

• More about asynchronous programming in .NET

• Working with Task objects

• Interop with synchronous code

• Working with multiple background tasks

• Asynchronous programming best practices

By the end of this chapter, you will have a deeper understanding of asynchronous programming and
should feel confident enough to add advanced async features to your team’s projects.

Asynchronous Programming with C#92

Technical requirements
In this chapter, we will be using the .NET command-line interface (CLI) and Visual Studio
Code to build and run the sample projects. To follow along with the examples, the following software
is recommended:

• Visual Studio Code version 1.65 or later

• .NET 6 or later

While these are recommended, if you have .NET 6 installed, you can use your preferred editor. For
example, Visual Studio 2022 version 17.0 or later if you are using Windows 10 or 11, Visual Studio
2022 for Mac on macOS 10.13 or later, or JetBrains Rider will work just as well.

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter05.

Let’s get started by working our way through some examples that use the TAP model with async
and await.

More about asynchronous programming in .NET
There are two types of scenarios where async code is usually introduced:

• I/O-bound operations: These involve resources fetched from the network or disk.

• CPU-bound operations: These are in-memory, CPU-intensive operations.

In this section, we will create some real-world examples that use async and await for each type
of operation. Whether you are waiting for an external process to complete or performing CPU-intensive
operations within your application, you can leverage asynchronous code to improve your
application’s performance.

Let’s start by looking at some examples of I/O-bound operations.

I/O-bound operations

When you are working with I/O-bound code that is constrained by file or network operations, your
code should use async and await to wait for the operations to complete.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter05
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter05
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter05

More about asynchronous programming in .NET 93

The .NET methods to perform network and file I/O are asynchronous, so the use of Task.Run will
not be necessary:

• Example 1: Let’s look at an example of an async method that reads the contents of a text file
with the ReadToEndAsync method, splits the text where Environment.NewLine
characters are found, and returns the data as a List<string> instance. Each line of text
from the file is an item in the list:

public async Task<List<string>> GetDataAsync

 (string filePath)

{

 using var file = File.OpenText(filePath);

 var data = await file.ReadToEndAsync();

 return data.Split(new[] { Environment.NewLine },

 StringSplitOptions.RemoveEmptyEntries)

 .ToList();

}

• Example 2: Another example of I/O-bound operations is a file download. We will take the
concept from the previous example, but this time the file to be split and returned is hosted on
a web server on the network. We will use the HttpClient class to download a file from the
provided URL with the await keyword before splitting and returning the lines of text in a list:

public async Task<List<string>> GetOnlineDataAsync

 (string url)

{

 var httpClient = new HttpClient();

 var data = await httpClient.GetStringAsync(url);

 return data.Split(new[] { Environment.NewLine },

 StringSplitOptions.RemoveEmptyEntries)

 .ToList();

}

Those are some common I/O-bound operations, but what is a CPU-bound operation and how does
it differ?

Asynchronous Programming with C#94

CPU-bound operations

In this case, your application is not waiting for an external process to complete. The application itself
is performing a CPU-intensive operation that takes time to complete, and you want the application
to remain responsive until the operation has finished.

In this example, we have a method that accepts a List<string> instance where each item in the
list contains an XML representation of this JournalEntry class:

[Serializable]

public class JournalEntry

{

 public string Title { get; set; }

 public string Description { get; set; }

 public DateTime EntryDate { get; set; }

 public string EntryText { get; set; }

}

Let’s assume that EntryText can be extremely large because some users who write in the journal
application will add dozens of pages of text to a single entry. Each entry is stored in a database as XML
and the application that loads the entries has a DeserializeEntries method to deserialize
each XML string and return the data as a List<JournalEntry> instance:

private List<JournalEntry> DeserializeEntries(List<string>

 journalData)

{

 var deserializedEntries = new List<JournalEntry>();

 var serializer = new XmlSerializer(typeof

 (JournalEntry));

 foreach (var xmlEntry in journalData)

 {

 if (xmlEntry == null) continue;

 using var reader = new StringReader(xmlEntry);

 var entry = (JournalEntry)serializer.Deserialize

 (reader)!;

 if (entry == null) continue;

 deserializedEntries.Add(entry);

 }

 return deserializedEntries;

}

More about asynchronous programming in .NET 95

After months of adding journal entries, users are complaining about the time it takes to load the
existing entries. They would like to start creating a new entry while the data is loading.

Luckily, using asynchronous .NET code can keep an application’s user interface responsive while waiting
for a long-running process to complete. The thread is free to perform other work until the non-blocking
call is completed. By adding an async method named DeserializeJournalDataAsync that
calls the existing method with an awaited Task.Run method, the client code can remain responsive
while users create new journal entries:

public async Task<List<JournalEntry>>

 DeserializeJournalDataAsync(List<string> journalData)

{

 return await Task.Run(() => DeserializeEntries

 (journalData));

}

If you’re working with serialized data in JSON format instead of XML, the synchronous and asynchronous
methods of deserialization are very similar. This is because .NET provides both the Deserialize
and DeserializeAsync methods in the System.Text.Json.JsonSerializer class.
Here are both methods with their differences highlighted:

public List<JournalEntry> DeserialzeJsonEntries

 (List<string> journalData)

{

 var deserializedEntries = new List<JournalEntry>();

 foreach (var jsonEntry in journalData)

 {

 if (string.IsNullOrWhiteSpace(jsonEntry)) continue;

 deserializedEntries.Add(JsonSerializer.Deserialize

 <JournalEntry>(jsonEntry)!);

 }

 return deserializedEntries;

}

public async Task<List<JournalEntry>> Deserialize

 JsonEntriesAsync(List<string> journalData)

{

 var deserializedEntries = new List<JournalEntry>();

 foreach (var jsonEntry in journalData)

 {

Asynchronous Programming with C#96

 if (string.IsNullOrWhiteSpace(jsonEntry)) continue;

 using var stream = new MemoryStream(Encoding

 .Unicode.GetBytes(jsonEntry));

 deserializedEntries.Add((await JsonSerializer

 .DeserializeAsync<JournalEntry>(stream))!);

 }

 return deserializedEntries;

}

The Deserialize method accepts string, but DeserializeAsync does not. Instead, we must
create a MemoryStream instance from the jsonEntry string to pass to DeserializeAsync.
Other than that, only the return types of the methods differ.

Let’s wrap up this section by looking at one more method for handling JSON deserialization of a
list of journal entries. In this example, the method that deserializes the data only processes a single
JSON entry. A parent method named GetJournalEntriesAsync uses a LINQ Select
operator to call DeserializeJsonEntryAsync for each string in the list and stores an
IEnumerable<Task<JournalEntry>> instance in a getJournalTasks variable:

public async Task<List<JournalEntry>>

 GetJournalEntriesAsync(List<string> journalData)

{

 var journalTasks = journalData.Select(entry =>

 DeserializeJsonEntryAsync(entry));

 return (await Task.WhenAll(journalTasks)).ToList();

}

private async Task<JournalEntry> DeserializeJsonEntryAsync

 (string jsonEntry)

{

 if (string.IsNullOrWhiteSpace(jsonEntry)) return new

 JournalEntry();

 using var stream = new MemoryStream

 (Encoding.Unicode.GetBytes(jsonEntry));

 return (await JsonSerializer.DeserializeAsync

 <JournalEntry>(stream))!;

}

More about asynchronous programming in .NET 97

The highlighted code awaits all the Task objects in journalTasks, returning the results of every
call as an array of JournalEntry objects. You can either declare GetJournalEntriesAsync
with a return type of Task<JournalEntry[]> or use ToList, as we have in this sample, to
return Task<List<JournalEntry>>. You can see how LINQ streamlines your code when it
is necessary to iterate over a list of items and make an async call with each item.

You have seen some different ways to use async and await in your code for both I/O-bound and
CPU-bound operations.

Next, we will discuss how nested async methods are chained and how to start the top level of
that chain.

Nested async methods

When it comes to using async methods, it is important to use await when you want to preserve
the order of execution. It is also important to preserve that chain of awaited calls to the entry point
for the current thread.

For example, if your application is a console application, the primary entry point is the Main method
in Program.cs. If you cannot make this Main method async, then none of the method calls
beneath Main are made with the await keyword. That is the reason why .NET now supports
async Main methods. Now, when you create a new console application with .NET 6, it has an
async Main method by default.

If the entry point for execution is an event handler, you should mark the event handler method as
async. This is the only time you will see async methods with a void return type:

private async void saveButton_Click(object sender,

 EventArgs e)

{

 await SaveData();

}

Let’s look at an example of the right way to chain multiple nested async methods in a console application:

1. Start by creating a new console application. Inside a folder named AsyncSamples, run the
following command:

dotnet new console –framework net6.0

2. When the process completes, open the new AsyncSamples.csproj in Visual Studio
Code or your editor of choice.

Asynchronous Programming with C#98

3. Add a new class to the project named TaskSample

4. Add the following code to the TaskSample class:

public async Task DoThingsAsync()

{

 Console.WriteLine($"Doing things in

 {nameof(DoThingsAsync)}");

 await DoFirstThingAsync();

 await DoSecondThingAsync();

 Console.WriteLine($"Did things in

 {nameof(DoThingsAsync)}");

}

private async Task DoFirstThingAsync()

{

 Console.WriteLine($"Doing something in

 {nameof(DoFirstThingAsync)}");

 await DoAnotherThingAsync();

 Console.WriteLine($"Did something in

 {nameof(DoFirstThingAsync)}");

}

private async Task DoSecondThingAsync()

{

 Console.WriteLine($"Doing something in

 {nameof(DoSecondThingAsync)}");

 await Task.Delay(500);

 Console.WriteLine($"Did something in

 {nameof(DoSecondThingAsync)}");

}

private async Task DoAnotherThingAsync()

{

 Console.WriteLine($"Doing something in

 {nameof(DoAnotherThingAsync)}");

More about asynchronous programming in .NET 99

 await Task.Delay(1500);

 Console.WriteLine($"Did something in

 {nameof(DoAnotherThingAsync)}");

}

5. Now open Program.cs and add some code to call DoThingsAsync:

using AsyncSamples;

Console.WriteLine("Start processing"…");

var taskSample = new TaskSample();

await taskSample.DoThingsAsync();

Console.WriteLi"e("Done processing"..");

Let’s illustrate the order and hierarchy of the methods being called by our project. The
Main method calls DoThingsAsync, which in turn calls DoFirstThingAsync
and DoSecondThingAsync . Finally, within DoFirstThingAsync ,
DoAnotherThingAsync is called. When each of these async methods is called with
the await operator, the order of operations is predictable:

Figure 5.1: The order of operations for awaited methods

Asynchronous Programming with C#100

6. Run the program and examine the order of the console output. Everything should be executing
in the expected order:

Figure 5.2: Examining the output of the AsyncSamples console application

7. Next, we will add two additional methods to the TaskSample class:

public async Task DoingThingsWrongAsync()

{

 Console.WriteLine($"Doing things in

 {nameof(DoingThingsWrongAsync)}");

 DoFirstThingAsync();

 await DoSecondThingAsync();

 Console.WriteLine($"Did things in

 {nameof(DoingThingsWrongAsync)}");

}

public async Task DoBlockingThingsAsync()

{

 Console.WriteLine($"Doing things in

 {nameof(DoBlockingThingsAsync)}");

 DoFirstThingAsync().Wait();

 await DoSecondThingAsync();

 Console.WriteLine($"Did things in

 {nameof(DoBlockingThingsAsync)}");

}

More about asynchronous programming in .NET 101

The DoingThingsWrongAsync method has removed the await from the call to
DoFirstThingAsync. So, the execution of DoSecondThingAsync will begin before
DoFirstThingAsync has been completed. That might be OK if none of the subsequent
code relies on the processing that happens within DoFirstThingAsync. However, any
unhandled exceptions inside a method that is not awaited will not automatically bubble up to the
calling method. The Task instance for the call will have a Status value of Faulted,
the IsFaulted property will be true, and the Exception property will contain the
unhandled exception information.

In the preceding case, any unhandled exceptions in DoFirstThingAsync will go undetected.
If you have a case where you are not awaiting a Task instance, be sure to monitor the status
of the Task instance in case of exceptions. This is one of the reasons why you should never
have an async void method. It does not return a Task instance to be awaited.

The DoBlockingThings method will maintain the correct order of operations, but by
calling DoFirstThingAsync().Wait() instead of awaiting the call, the thread executing
DoBlockingThings will be blocked. It will wait for the call to DoFirstThingAsync
to complete instead of being free to pick up other work until the long-running async method
completes. Using blocking calls such as Wait() or Result can quickly deplete the available
threads in ThreadPool.

8. Update Program.cs to call all three of the public TaskSample methods:

using AsyncSamples;

Console.WriteLine("Start processing...");

var taskSample = new TaskSample();

await taskSample.DoThingsAsync();

Console.WriteLine("Continue processing...");

await taskSample.DoingThingsWrongAsync();

Console.WriteLine("Continue processing...");

await taskSample.DoBlockingThingsAsync();

Console.WriteLine("Done processing...");

9. Now run the program and examine the console output to see how it is impacted by omitting
await inside DoingThingsWrongAsync:

Asynchronous Programming with C#102

Figure 5.3: Console output when calling all the TaskSample methods

The output may differ a little each time, depending on how the ThreadPool threads are allocated. In
this case, the second call to DoFirstThingAsync remains incomplete until the third call to that
same method starts. Even though Program.cs awaits its call to DoingThingsWrongAsync,
the code inside of that method was still executing after the next call to DoBlockingThingsAsync
was invoked.

Things can get very unpredictable when async tasks are not awaited. You should always await a task
unless you have a good reason not to do so. Next, let’s explore some properties and methods available
in the Task class.

Working with Task objects
Working directly with Task objects can be extremely useful when introducing threading to existing
projects. As we saw in the previous section, it is important to update the entire call stack when
introducing async and await. On a large code base, those changes could be extensive and would
require quite a bit of regression testing.

You can instead use Task and Task<TResult> to wrap the existing methods that you want to
run asynchronously. Both Task types represent the asynchronous work being done by a method or
action. You use Task when a method would have otherwise returned void. Use Task<TResult>
with methods that have a non-void return type.

Working with Task objects 103

Here are examples of two synchronous method signatures and their async equivalents:

public interface IAsyncExamples

{

 void ProcessOrders(List<Order> orders);

 Task ProcessOrdersAsync(List<Order> orders);

 List<Order> GetOrders(int customerId);

 Task<List<Order>> GetOrdersAsync(int customerId);

}

We have seen some examples of using Task objects in this chapter. Now it is time to explore additional
properties, methods, and uses of these two types.

Exploring Task methods

To start, we will discover some commonly used Task methods in practical examples. Consider the
ProcessOrders method that accepts a list of orders to be processed and submitted. The four Task
methods used are as follows:

• Task.Run: Runs a method on a thread on the thread pool

• Task.Factory.StartNew: Runs a method on a thread on the thread pool, with
TaskCreationOptions provided

• processOrdersTask.ContinueWith: When the processOrdersTask completes,
it will execute the method provided on the same thread pool thread.

• Task.WaitAll: This method will block the current thread and wait for all tasks in
the array.

These methods have been highlighted in the following code:

public void ProcessOrders(List<Order> orders, int

 customerId)

{

 Task<List<Order>> processOrdersTask = Task.Run(() =>

 PrepareOrders(orders));

 Task labelTask = Task.Factory.StartNew(() =>

 CreateLabels(orders), TaskCreationOptions

 .LongRunning);

 Task sendTask = processOrdersTask.ContinueWith(task =>

 SendOrders(task.Result));

Asynchronous Programming with C#104

 Task.WaitAll(new[] { labelTask, sendTask });

 SendConfirmation(customerId);

}

This is what is happening on each line of the preceding example:

1. Task.Run will create a new background thread and queue it on ThreadPool

2. Task.Factory.StartNew will also create a new background thread and queue it on
ThreadPool. In addition, we are providing TaskCreattionOptions.LongRunning
as a parameter of StartNew to indicate that creating additional threads is warranted because
this task may take a while to complete. This will prevent delays for other tasks queued on
ThreadPool.

3. ContinueWith will queue SendOrders on a ThreadPool thread, but the thread will
not start until processOrdersTask has been completed.

4. Task.WaitAll is the synchronous equivalent of the async method, Task.WhenAll.
It will block the current thread until labelTask and sendTask are complete.

5. Finally, SendConfirmation is called to notify the customer that their orders have been
processed and sent.

Using tasks in this way can achieve the same result as an async method that awaits tasks to achieve
parallel processing. The main difference is that the current thread will be blocked at step 4 when
WaitAll is called.

Another useful method we will explore next is RunSynchronously. This starts a task but executes
it synchronously on the current thread. The asynchronous equivalent is to call Start on a task.

In this example, the ProcessData method accepts a parameter indicating whether the data must
be processed on the UI thread. It is possible that some data processing requires interacting with the
UI to present the user with some options or other feedback:

public void ProcessData(object data, bool uiRequired)

{

 Task processTask = new(() => DoDataProcessing(data));

 if (uiRequired)

 {

 // Run on current thread (UI thread assumed for

 example)

 processTask.RunSynchronously();

 }

 else

Working with Task objects 105

 {

 // Run on ThreadPool thread in background

 processTask.Start();

 }

}

Next, let’s explore some of the properties of the Task and Task<TResult> classes.

Exploring Task properties

In this section, we will review the properties available on a Task object. Most of the properties are
related to the status of a task, so we will start with the Status property. The Status property
returns TaskStatus, which is an enumeration with eight possible values:

• Created (0): The task has been created and initialized but has not been scheduled on
ThreadPool.

• WaitingForActivation (1): The task is waiting to be scheduled by .NET

• WaitingToRun (2): The task has been scheduled but has not started executing yet

• Running (3): The task is currently running.

• WaitingForChildrenToComplete (4): The task has been completed but there are
attached child tasks that are still running or waiting to run

• RanToCompletion (5): The task successfully ran to completion

• Canceled (6): The task was canceled and acknowledged the cancellation

• Faulted (7): An unhandled exception was encountered while executing the task

The following properties of Task and Task<TResult> are shortcuts to check statuses:

• IsCanceled: Returns true if the task’s Status is Canceled

• IsCompleted: Returns true if the task’s Status is RanToCompletion, Canceled,
or Faulted

• IsCompletedSuccessfully: Returns true if the task’s Status is RanToCompletion

• IsFaulted: Returns true if the task’s Status is Faulted

Using these properties can streamline status checks in your code. The remaining instance properties
of the Task object follow:

• AsyncState: Returns the state that was provided when creating the task. If no state was
provided, this property returns null

Asynchronous Programming with C#106

• CreationOptions: Returns the CreationOptions values that were provided when
creating the task. If no options were provided, it defaults to TaskCreationOptions.None.

• Exception: Returns an AggregateException instance containing unhandled
exceptions encountered while the task was running. Wait or WaitAll should be called in
a try/catch block that handles the AggregateException type.

• Id: A system-assigned identifier for the task

Let’s take a quick look at how to correctly catch an AggregateException instance and inspect
the Exception property of the faulted task:

Task ordersTask = Task.Run(() => ProcessOrders(orders,

 123));

try

{

 ordersTask.Wait();

 Console.WriteLine($"ordersTask Status:

 {ordersTask.Status}");

}

catch (AggregateException)

{

 Console.WriteLine($"Exception in ordersTask! Error

 message: {ordersTask.Exception.Message}");

}

This code will write the status of the task to the console after completion. If an unhandled exception
is encountered, the error message will be written to the console in the catch block.

Now that you’re more familiar with the members of Task and Task<TResult>, let’s discuss some
use cases for calling synchronous code from async code and vice versa.

Interop with synchronous code
When working with existing projects and introducing async code to the system, there will be points
where synchronous and asynchronous code intersect. We have already seen some examples of how
to handle this interop in this chapter. In this section, we will focus on that interop in both directions:
sync calling async and async calling sync.

We will create a sample project with classes containing synchronous methods representing legacy
code and another set of classes with modern async methods.

Let’s start by discussing how to consume async methods in your legacy synchronous code.

Interop with synchronous code 107

Executing async from synchronous methods

In this example, we will be working with a .NET console application that gets a patient and their list
of medications. The application will call a synchronous GetPatientAndMedications method
that in turn calls an async GetPatientInfoAsync method:

1. Start by creating a new .NET console application

2. Add Patient, Provider, and Medication classes to a Models folder and
HealthcareService and MedicationLoader classes to a SyncToAsync folder:

Figure 5.4: The initial project structure for calling async from sync code

3. Add the necessary properties for the model classes:

public class Medication

{

 public int Id { get; set; }

 public string? Name { get; set; }

}

public class Provider

{

 public int Id { get; set; }

 public string? Name { get; set; }

}

Asynchronous Programming with C#108

public class Patient

{

 public int Id { get; set; }

 public string? Name { get; set; }

 public List<Medication>? Medications { get; set; }

 public Provider? PrimaryCareProvider { get; set; }

}

4. Create the GetPatientInfoAsync method in the HealthcareService class.
This method creates a patient with a provider and two medications after injecting a 2-second
async delay:

public async Task<Patient> GetPatientInfoAsync

 (int patientId)

{

 await Task.Delay(2000);

 Patient patient = new()

 {

 Id = patientId,

 Name = "Smith, Terry",

 PrimaryCareProvider = new Provider

 {

 Id = 999,

 Name = "Dr. Amy Ng"

 },

 Medications = new List<Medication>

 {

 new Medication { Id = 1, Name =

 "acetaminophen" },

 new Medication { Id = 2, Name =

 "hydrocortisone cream" }

 }

 };

 return patient;

}

Interop with synchronous code 109

5. Add the implementation for the MedicationLoader service:

public class MedicationLoader

{

 private HealthcareService _healthcareService;

 public MedicationLoader()

 {

 _healthcareService = new HealthcareService();

 }

 public Patient? GetPatientAndMedications(int

 patientId)

 {

 Patient? patient = null;

 try

 {

 patient = _healthcareService

 .GetPatientInfoAsync(patientId).Result;

 }

 catch (AggregateException ae)

 {

 Console.WriteLine($"Error loading patient.

 Message: {ae.Flatten().Message}");

 }

 if (patient != null)

 {

 patient = ProcessPatientInfo(patient);

 return patient;

 }

 else

 {

 return null;

 }

 }

 private Patient ProcessPatientInfo(Patient

 patient)

Asynchronous Programming with C#110

 {

 // Add additional processing here.

 return patient;

 }

}

The GetPatientAndMedications method calls GetPatientInfoAsync and uses
the Result property to synchronously wait for the async method to complete and return
the value. Using Result is the same as using the Wait() method on an async method
that returns no value. The current thread is blocked until the method completes.

We have wrapped the call in a try/catch block that handles an AggregateException
instance. If the call was successful, and the patient variable is not null,
ProcessPatientInfo is called before returning the patient data to the caller.

6. Add this code to Program.cs to call the synchronous method:

using SyncAndAsyncSamples.Models;

using SyncAndAsyncSamples.SyncToAsync;

Console.WriteLine("Hello, sync to async world!");

var medLoader = new MedicationLoader();

Patient? patient = medLoader.GetPatientAndMedications

 (123);

Console.WriteLine($"Loaded patient: {patient.Name}

 with {patient.Medications.Count} medications.");

7. Run the program. You should see this output in the window:

Hello, sync to async world!

Loaded patient: Smith, Terry with 2 medications.

Next, let’s try to load the same data but with an async method calling some legacy synchronous code.

Executing synchronous code as async

In this example, we will mirror the previous example. There will be a PatientLoader instance
with async methods calling a PatientService instance with a synchronous method:

1. Add a PatientService class to a new AsyncToSync folder in your project.

Interop with synchronous code 111

2. Create a GetPatientInfo method with a similar implementation to the
GetPatientInfoAsync method in the previous example:

public Patient GetPatientInfo(int patientId)

{

 Thread.Sleep(2000);

 Patient patient = new()

 {

 Id = patientId,

 Name = "Smith, Terry",

 PrimaryCareProvider = new Provider

 {

 Id = 999,

 Name = "Dr. Amy Ng"

 },

 Medications = new List<Medication>

 {

 new Medication { Id = 1, Name =

 "acetaminophen" },

 new Medication { Id = 2, Name =

 "hydrocortisone cream" }

 }

 };

 return patient;

}

The differences here are that the method is not async, it returns a Patient instance instead
of a Task<Patient> instance, and we’re injecting a delay with Thread.Sleep instead
of Task.Delay.

3. Create the PatientLoader class in the AsyncToSync folder, and start its implementation
by creating a new instance of PatientService:

private PatientService _patientService = new

 PatientService();

4. Now create the async version of ProcessPatientInfo from the previous example:

private async Task<Patient> ProcessPatientInfoAsync

 (Patient patient)

Asynchronous Programming with C#112

{

 await Task.Delay(100);

 // Add additional processing here.

 return patient;

}

5. Now create the GetPatientAndMedsAsync method:

public async Task<Patient?> GetPatientAndMedsAsync

 (int patientId)

{

 Patient? patient = null;

 try

 {

 patient = await Task.Run(() =>

 _patientService.GetPatientInfo(patientId));

 }

 catch (Exception e)

 {

 Console.WriteLine($"Error loading patient.

 Message: {e.Message}");

 }

 if (patient != null)

 {

 patient = await ProcessPatientInfoAsync

 (patient);

 return patient;

 }

 else

 {

 return null;

 }

}

The primary differences from the last example are highlighted. The synchronous class to
GetPatientInfo is wrapped in a call to await Task.Run, which will wait for the
call without blocking the current thread from performing other work.

Working with multiple background tasks 113

We are now using Exception instead of AggregateException in the catch block.
You should always use AggregateException with blocking Wait and Result calls
and use Exception with async and await.

Finally, the async call to ProcessPatientInfoAsync is awaited if the patient
variable is not null.

6. Next update Program.cs to call the new PatientLoader code:

using SyncAndAsyncSamples.AsyncToSync;

using SyncAndAsyncSamples.Models;

Console.WriteLine("Hello, async to sync world!");

var loader = new PatientLoader();

Patient? patient = await loader.GetPatientAndMedsAsync

 (123);

Console.WriteLine($"Loaded patient: {patient.Name}

 with {patient.Medications.Count} medications.");

7. Run the program, and the output should look similar to the previous example:

Hello, async to sync world!

Loaded patient: Smith, Terry with 2 medications.

By now, you should have a solid understanding of how to interop between asynchronous and
synchronous code. Let’s move forward and create an example of loading data from several async
methods in parallel.

Working with multiple background tasks
In this section, we will see code samples for loading data from multiple sources in parallel, not
waiting until the method is ready to return the data to the caller. The technique is slightly different
for synchronous and asynchronous code, but the general idea is the same.

First, review this method that calls three async methods and uses Task.WhenAll to wait before
returning the patient data:

public async Task<Patient> LoadPatientAsync(int patientId)

{

 var taskList = new List<Task>

 {

 LoadPatientInfoAsync(patientId),

 LoadProviderAsync(patientId),

Asynchronous Programming with C#114

 LoadMedicationsAsync(patientId)

 };

 await Task.WhenAll(taskList.ToArray());

 _patient.Medications = _medications;

 _patient.PrimaryCareProvider = _provider;

 return _patient;

}

Now, review this synchronous version of the method, which uses Task.WaitAll:

public Patient LoadPatient(int patientId)

{

 var taskList = new List<Task>

 {

 LoadPatientInfoAsync(patientId),

 LoadProviderAsync(patientId),

 LoadMedicationsAsync(patientId)

 };

 Task.WaitAll(taskList.ToArray());

 _patient.Medications = _medications;

 _patient.PrimaryCareProvider = _provider;

 return _patient;

}

Even this version of the code, which uses a blocking WaitAll call, will perform faster than making
separate synchronous calls to the three methods.

The complete implementation of this ParallelPatientLoader class is available in the GitHub
repository for this chapter. Let’s finish up the chapter by listing some best practices for using async,
await, and Task objects.

Asynchronous programming best practices
When working with async code, there are many best practices of which you should be aware. In
this section, we will list the most important ones to remember in your day-to-day development.
David Fowler, who is a veteran member of the ASP.NET team at Microsoft and a .NET
expert, maintains an open source list of many other best practices. I recommend bookmarking
this page for later reference while working with your own projects: https://github.com/
davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.
md#asynchronous-programming.

https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md#asynchronous-programming
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md#asynchronous-programming
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md#asynchronous-programming

Summary 115

These are my top recommendations (in no particular order) to follow when working with async code:

1. Always prefer async and await over synchronous methods and blocking calls such as
Wait() and Result. If you are creating a new project, you should build with async in
mind from the start.

2. Unless you are using Task.WhenAll to wait for multiple operations simultaneously, you
should directly await a method rather than creating a Task instance and awaiting it.

3. Do not use async void. Your async methods should always return Task, Task<TResult>,
ValueTask, or ValueTask<TResult>. The only exceptions are event handlers that
have existing signatures that return void. Event Main methods can be async in .NET 6.

4. Do not mix blocking code and asynchronous code. Use async calls through the call stack.

5. Use Task.Run instead of Task.Factory.StartNew unless you need to pass additional
parameters to one of the StartNew overloaded methods.

6. Long-running async methods should support cancellation. We will discuss cancellation in
depth in Chapter 11.

7. Synchronize the usage of shared data. Your code should add locks to prevent any overwriting
of data in objects used across threads.

8. Always use async and await for I/O-bound work such as network and file access.

9. When you create an async method, add the Async suffix to its name. This helps to differentiate
sync and async methods at a glance. An async method to return user information should
be named GetUserInfoAsync, not GetUserInfo.

10. Do not use Thread.Sleep in async methods. If your code must wait for a fixed period,
use await Task.Delay.

Those are my 10 rules to get you started, but there are many more best practices for async development
with .NET. We will discover more of them as we progress through the remaining chapters.

Let’s wrap up and review what we have learned about async programming in this chapter.

Summary
In this chapter, we have covered quite a bit of information about asynchronous development with C#
and. NET. We started by covering some of the ways to handle I/O-bound and CPU-bound operations
in your applications.

Next, we created some practical examples that use the Task and Task<TResult> classes and
discovered how to work with multiple Task objects. You got some practical advice for interop between
modern asynchronous code and legacy synchronous methods. Finally, we covered some of the most
important rules to remember when working with asynchronous code and Task objects.

Asynchronous Programming with C#116

In the next chapter, Chapter 6, you will learn the ins and outs of parallel programming in .NET using
the Task Parallel Library (TPL) and learn how to the avoid common pitfalls of parallel programming.

Questions
1. Which property of Task makes a blocking call to return data from the underlying method?

2. Which async method of the Task class should be used to await multiple tasks?

3. What is the blocking equivalent of Task.WhenAll()?

4. What type should an async method always return?

5. Are async methods more suited to I/O-bound or CPU-bound operations?

6. True or false: Async methods should never end with Async as their suffix.

7. What method can be used to wrap a synchronous method in an async call?

6
P a r a l l e l P r o g r a m m i n g

C o n c e p t s

The Task Parallel Library (TPL) encompasses various .NET programming constructs, including
parallel loops, parallel invocations, PLINQ, and task-based async programming. In Chapter 5, we
explored async programming with Task objects. This chapter will delve deeper into the System.
Threading.Tasks.Parallel members in the TPL and some additional tasking concepts
for handling related tasks.

The lines between parallel programming, concurrency, and asynchronous programming are not always
clear-cut, and you will discover where the three concepts intersect as we read ahead.

In this chapter, you will learn the following:

• Getting started with the TPL

• Parallel loops in .NET

• Relationships between parallel tasks

• Common pitfalls with parallelism

By the end of this chapter, you will understand how to use parallel programming in your own projects,
why you would choose a parallel loop over a standard loop, and when to use async and await
instead of a parallel loop.

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for Windows
developers:

• Visual Studio 2022 version 17.0 or later

• .NET 6

Parallel Programming Concepts118

While these are recommended, if you have .NET 6 installed, you can use your preferred editor. For
example, Visual Studio 2022 for Mac on macOS 10.13 or later, JetBrains Rider, or Visual Studio Code
will work just as well.

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter06.

Let’s get started by discussing the TPL and where it fits within the world of parallel programming
in .NET.

Getting started with the TPL
The TPL consists of the types that were added to the System.Threading and System.
Threading.Tasks namespaces in .NET Framework 4.0. The TPL provides features that make
parallelism and concurrency simpler for .NET developers. There is no need to manage the ThreadPool
tasks in your code. The TPL handles thread management and automatically scales the number of active
threads based on processor capability and availability.

Developers should use the TPL when they need to introduce parallelism or concurrency to their
code for improved performance. However, the TPL is not the right choice for every scenario. How do
you know when to choose the TPL and which TPL constructs are the best choice for each scenario?

Let’s explore a few common scenarios.

I/O-bound operations

When dealing with I/O-bound operations such as file operations, database calls, or web service calls,
asynchronous programming with Task objects and C# async/await operations are your best
choice. If your service requires that you loop through a large collection, making a service call for each
object in the loop, you should consider refactoring the service to return the data as a single service call.
This will minimize the overhead associated with each network operation. It will also allow your client
code to make a single async call to the service while keeping the main thread free to do other work.

I/O-bound operations are usually not suited to parallel operations, but there are exceptions to every
rule. If you need to iterate through a set of folders and subfolders in the filesystem, a parallel loop
can be well-suited for this. However, it is important that none of the iterations of your loop attempt
to access the same file in order to avoid locking issues.

Now, let’s explore some CPU-bound scenarios.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter06
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter06
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter06

Parallel loops in .NET 119

CPU-bound operations

CPU-bound operations are not reliant on outside resources such as the filesystem, network, or the
internet. They involve processing data in memory within your application’s process. There are many types
of data transformation that fall into this category. Your application may be serializing or deserializing
data, converting between file types, or processing images or other binary data.

These types of operations make sense for data parallelism and parallel loops in particular, with a
couple of exceptions. First, if each iteration is not very CPU intensive, using the TPL is not worth the
overhead it introduces. If the process is very intensive, but there are very few objects to iterate over,
consider using Parallel.Invoke instead of one of the parallel loops, Parallel.For or
Parallel.ForEach. Using parallel constructs for less CPU-intense operations can often slow
your code due to the overhead of using the TPL. In Chapter 10 we will learn how to use Visual Studio
to determine the performance of parallel and concurrent code.

Now that you have some understanding of when to use parallelism in your applications, let’s explore
some practical examples of using Parallel.For and Parallel.ForEach.

Parallel loops in .NET
In this section, we will explore some examples of leveraging data parallelism in .NET projects. The
parallel versions of the C# for and foreach loops, Parallel.For and Parallel.ForEach,
are part of the System.Threading.Tasks.Parallel namespace. Using these parallel loops
is similar to using their standard counterparts in C#.

One key difference is that the body of the parallel loops is declared as a lambda expression. As a
result, there are some changes to how you would continue or break from the parallel loops. Instead
of using continue to stop the current iteration of the loop without breaking the entire loop, you
would use a return statement. The equivalent of using break to break out of a parallel loop is to
use the Stop() or Break() statements.

Let’s look at an example of using a Parallel.For loop in a .NET WinForms application.

Basic Parallel.For loops

We are going to create a new WinForms application that allows users to select a folder on their workstation
and examine some information about the files in the selected folder. The project’s FileProcessor
class will iterate the files to aggregate the file size and find the most recently written file:

1. Start by creating a new .NET 6 WinForms project in Visual Studio

Parallel Programming Concepts120

2. Add a new class named FileData. This class will contain the data from FileProcessor:

public class FileData

{

 public List<FileInfo> FileInfoList { get; set; } =

 new();

 public long TotalSize { get; set; } = 0;

 public string LastWrittenFileName

 { get; set; } = "";

 public DateTime LastFileWriteTime { get; set; }

}

We will be returning a list of the FileInfo objects for the files in the selected folder, the total
size of all files, the name of the last written file, and the date and time that the file was written.

3. Next, create a new class named FileProcessor

4. Add a static method named GetInfoForFiles to FileProcessor:

public static FileData GetInfoForFiles(string[] files)

{

 var results = new FileData();

 var fileInfos = new List<FileInfo>();

 long totalFileSize = 0;

 DateTime lastWriteTime = DateTime.MinValue;

 string lastFileWritten = "";

 object dateLock = new();

 Parallel.For(0, files.Length,

 index => {

 FileInfo fi = new(files[index]);

 long size = fi.Length;

 DateTime lastWrite =

 fi.LastWriteTimeUtc;

 lock (dateLock)

 {

 if (lastWriteTime < lastWrite)

 {

 lastWriteTime = lastWrite;

 lastFileWritten = fi.Name;

 }

Parallel loops in .NET 121

 }

 Interlocked.Add(ref totalFileSize,

 size);

 fileInfos.Add(fi);

 });

 results.FileInfoList = fileInfos;

 results.TotalSize = totalFileSize;

 results.LastFileWriteTime = lastWriteTime;

 results.LastWrittenFileName = lastFileWritten;

 return results;

}

The Parallel.For loop and the lambda expression of its body are highlighted in the
preceding code. There are a few things to note about the code inside the loop:

I. First, index is provided as a parameter to the lambda expression so the expression
body can use it to access the current member of the files array.

II. The totalFileSize gets updated inside a call to Interlocked.Add. This is
the most efficient way to safely add values in parallel code.

III. There isn’t a simple way to leverage Interlocked to update the lastWriteTime
DateTime value. So, instead, we are using a lock block with a dateLock object to
safely read and set the lastWriteTime method-level variable.

5. Next, open the designer for Form1.cs and add the following controls to the form:

private GroupBox FileProcessorGroup;

private Button FolderProcessButton;

private Button FolderBrowseButton;

private TextBox FolderToProcessTextBox;

private Label label1;

private TextBox FolderResultsTextBox;

private Label label2;

private FolderBrowserDialog folderToProcessDialog;

View the Form1.designer.cs file on this chapter’s GitHub repository (https://
github.com/PacktPublishing/Parallel-Programming-and-
Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter06/
WinFormsParallelLoopApp) to review and set all of the properties for these controls.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter06/WinFormsParallelLoopApp
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter06/WinFormsParallelLoopApp
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter06/WinFormsParallelLoopApp
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter06/WinFormsParallelLoopApp

Parallel Programming Concepts122

When you are finished, the form’s designer should look like this:

Figure 6.1 – The completed Form1.cs designer view in Visual Studio

6. Next, double-click the Browse button in the Form1 designer, and a FolderBrowserButton_
Click event handler will be generated in the code-behind file. Add the following code to use
the folderToProcessDialog object to show a folder picker dialog to the user:

private void FolderBrowseButton_Click(object sender,

 EventArgs e)

{

 var result = folderToProcessDialog.ShowDialog();

 if (result == DialogResult.OK)

 {

 FolderToProcessTextBox.Text =

 folderToProcessDialog.SelectedPath;

 }

}

The selected folder path will be set in FolderToProcessTextBox for use in the next
step. The user can alternatively manually type or paste a folder path in the field. If you would
like to prevent manual entry, you can set FolderToProcessTextBox.ReadOnly
to true.

Parallel loops in .NET 123

7. Next, double-click the Process button in the designer view. A FolderProcessButton_
Click event handler will be generated in the code behind. Add the following code to call
FileProcessor and display the results in FolderResultsTextBox:

private void FolderProcessButton_Click(object sender,

 EventArgs e)

{

 if (!string.IsNullOrWhiteSpace

 (FolderToProcessTextBox.Text) &&

 Directory.Exists(FolderToProcessTextBox.Text))

 {

 string[] filesToProcess = Directory.GetFiles

 (FolderToProcessTextBox.Text);

 FileData? results = FileProcessor

 .GetInfoForFiles(filesToProcess);

 if (results == null)

 {

 FolderResultsTextBox.Text = "";

 return;

 }

 StringBuilder resultText = new();

 resultText.Append($"Total file count:

 {results.FileInfoList.Count}; ");

 resultText.AppendLine($"Total file size:

 {results.TotalSize} bytes");

 resultText.Append($"Last written file:

 {results.LastWrittenFileName} ");

 resultText.Append($"at

 {results.LastFileWriteTime}");

 FolderResultsTextBox.Text =

 resultText.ToString();

 }

}

The code here is straightforward enough. The static GetInfoForFiles method returns
a FileData instance with the file information. We’re using StringBuilder to create
the output to be set in FolderResultsTextBox.

Parallel Programming Concepts124

8. We’re ready to run the application. Start debugging the project in Visual Studio and give it a
try. Your results should look something like this:

Figure 6.2 – Running the Parallel Loops application

That’s all there is to it. If you want to try something more advanced, you can try modifying the project
to also process files in all subfolders of the selected folder. Let’s make a different change to the project
so we can reduce the locking calls to Interlocked.Add.

Parallel loops with thread-local variables

The Parallel.For construct has an overload that will allow our code to keep a running subtotal
of the total file size for each thread participating in the loop. What that means is that we will only need
to use Interlocked.Add when aggregating the subtotal from each thread to totalFileSize.
This is accomplished by providing a thread-local variable to the loop. The subtotal in the following
code is stored discretely for each thread. So, if the loop has 200 iterations, but only 5 threads participate
in the loop, Interlocked.Add will only be called 5 times instead of 200 times without losing
any thread safety:

public static FileData GetInfoForFilesThreadLocal(string[]

 files)

{

 var results = new FileData();

 var fileInfos = new List<FileInfo>();

 long totalFileSize = 0;

 DateTime lastWriteTime = DateTime.MinValue;

 string lastFileWritten = "";

Parallel loops in .NET 125

 object dateLock = new();

 Parallel.For<long>(0, files.Length, () => 0,

 (index, loop, subtotal) => {

 FileInfo fi = new(files[index]);

 long size = fi.Length;

 DateTime lastWrite = fi.LastWriteTimeUtc;

 lock (dateLock)

 {

 if (lastWriteTime < lastWrite)

 {

 lastWriteTime = lastWrite;

 lastFileWritten = fi.Name;

 }

 }

 subtotal += size;

 fileInfos.Add(fi);

 return subtotal;

 },

 (runningTotal) => Interlocked.Add(ref

 totalFileSize, runningTotal)

);

 results.FileInfoList = fileInfos;

 results.TotalSize = totalFileSize;

 results.LastFileWriteTime = lastWriteTime;

 results.LastWrittenFileName = lastFileWritten;

 return results;

}

To summarize the preceding changes, you will notice we are using the Parallel.For<long>
generic method to indicate that the subtotal thread-local variable should be long instead of
int (the default type). The size is added to subtotal in the first lambda expression without any
locking expression. We now have to return subtotal, so the other iterations have access to the
data. Finally, we have added a final parameter to For with a lambda expression that adds each thread’s
runningTotal to totalFileSize using Interlocked.Add.

If you update FolderProcessButton_Click to call GetInfoForFilesThreadLocal,
the output will be the same, but the performance will be improved, perhaps not noticeably. The
performance improvement depends on the number of files in your selected folder.

Parallel Programming Concepts126

Now that we have tried a couple of exercises with the Parallel.For loop, let’s create a sample
using the Parallel.ForEach method.

Simple Parallel.ForEach loops

The Parallel.ForEach methods, such as Parallel.For, are similar in use to their
non-parallel counterpart. You would use Parallel.ForEach over Parallel.For when
you have an IEnumerable collection to process. In this sample, we will create a new method that
accepts a List<string> of image files to iterate and convert to Bitmap objects:

1. Start by creating a new private static method named ConvertJpgToBitmap in the
FileProcessor class. This method will open each JPG file and return a new Bitmap
containing the image data:

private static Bitmap ConvertJpgToBitmap(string

 fileName)

{

 Bitmap bmp;

 using (Stream bmpStream = File.Open(fileName,

 FileMode.Open))

 {

 Image image = Image.FromStream(bmpStream);

 bmp = new Bitmap(image);

 }

 return bmp;

}

2. Next, create a public static method in the same class named ConvertFilesToBitmaps:

public static List<Bitmap> ConvertFilesToBitmaps

 (List<string> files)

{

 var result = new List<Bitmap>();

 Parallel.ForEach(files, file =>

 {

 FileInfo fi = new(file);

 string ext = fi.Extension.ToLower();

 if (ext == ".jpg" || ext == ".jpeg")

Parallel loops in .NET 127

 {

 result.Add(ConvertJpgToBitmap(file));

 }

 });

 return result;

}

This method accepts List<string> containing the files in the selected folder. Inside
the Parallel.ForEach loop, it checks whether the file has a .jpg or .jpeg file
extension. If it does, it is converted to a bitmap and added to the result collection.

3. Add a new button to Form1.cs. Set the Name property as ProcessJpgsButton and
the Text property as Process JPGs.

4. Double-click the new button to create an event handler in the code-behind file. Add the following
code to the new event handler:

private void ProcessJpgsButton_Click(object sender,

 EventArgs e)

{

 if (!string.IsNullOrWhiteSpace

 (FolderToProcessTextBox.Text) &&

 Directory.Exists(FolderToProcessTextBox.Text))

 {

 List<string> filesToProcess = Directory

 .GetFiles(FolderToProcessTextBox.Text)

 .ToList();

 List<Bitmap> results = FileProcessor

 .ConvertFilesToBitmaps(filesToProcess);

 StringBuilder resultText = new();

 foreach (var bmp in results)

 {

 resultText.AppendLine($"Bitmap height:

 {bmp.Height}");

 }

 FolderResultsTextBox.Text =

 resultText.ToString();

 }

}

Parallel Programming Concepts128

5. Now, run the project, select a folder containing some JPG files, and click the new Process JPGs
button. You should see the height of each converted JPG listed in the output.

That’s all you need for a simple Parallel.ForEach loop. What can you do if you need to
cancel a long-running parallel loop? Let’s update our example to do just that with Parallel.
ForEachAsync.

Cancel a Parallel.ForEachAsync loop

Parallel.ForEachAsync is new in .NET 6. It is an awaitable version of Parallel.ForEach
with an async lambda expression as its body. Let’s update the previous example to use this new
parallel method and add the ability to cancel the operation:

1. We are going to start by making an async copy of ConvertFilesToBitmaps named
ConvertFilesToBitmapsAsync. The differences are highlighted in the following:

public static async Task<List<Bitmap>>

 ConvertFilesToBitmapsAsync(List<string> files,

 CancellationTokenSource cts)

{

 ParallelOptions po = new()

 {

 CancellationToken = cts.Token,

 MaxDegreeOfParallelism =

 Environment.ProcessorCount == 1 ? 1

 : Environment.ProcessorCount - 1

 };

 var result = new List<Bitmap>();

 try

 {

 await Parallel.ForEachAsync(files, po, async

 (file, _cts) =>

 {

 FileInfo fi = new(file);

 string ext = fi.Extension.ToLower();

 if (ext == ".jpg" || ext == "jpeg")

 {

 result.Add(ConvertJpgToBitmap(file));

 await Task.Delay(2000, _cts);

Parallel loops in .NET 129

 }

 });

 }

 catch (OperationCanceledException e)

 {

 MessageBox.Show(e.Message);

 }

 finally

 {

 cts.Dispose();

 }

 return result;

}

The new method is async, returns Task<List<Bitmap>>, accepts
CancellationTokenSource, and uses that when creating ParallelOptions
to pass to the Parallel.ForEachAsync method. Parallel.ForEachAsync
is awaited and its lambda expression is declared as async so we can await the new Task.
Delay that has been added to give us enough time to click the Cancel button before the
loop completes.

Enclosing Parallel.ForEachAsync in a try/catch block that handles
OperationCanceledException enables the method to catch the cancellation. We’ll
show a message to the user after the cancellation is handled.

The code is also setting the ProcessorCount option. If there is only one CPU core
available, we will set the value to 1; otherwise, we want to use no more than the number of
available cores minus one. The .NET runtime typically manages this value very well, so you
should only change this option if you find it improves your application’s performance.

2. In the Form1.cs file, add a new CancellationTokenSource private variable:

private CancellationTokenSource _cts;

3. Update the event handler to be async , set _cts to be a new instance of
CancellationTokenSource, and pass it to ConvertFilesToBitmapsAsync.
Add await to that call as well.

All of the necessary changes are highlighted in the following snippet:

private async void ProcessJpgsButton_Click(object

 sender, EventArgs e)

{

 if (!string.IsNullOrWhiteSpace

Parallel Programming Concepts130

 (FolderToProcessTextBox.Text) &&

 Directory.Exists(FolderToProcessTextBox.Text))

 {

 _cts = new CancellationTokenSource();

 List<string> filesToProcess = Directory

 .GetFiles(FolderToProcessTextBox.Text)

 .ToList();

 List<Bitmap> results = await FileProcessor

 .ConvertFilesToBitmapsAsync

 (filesToProcess, _cts);

 StringBuilder resultText = new();

 foreach (var bmp in results)

 {

 resultText.AppendLine($"Bitmap height:

 {bmp.Height}");

 }

 FolderResultsTextBox.Text = resultText

 .ToString();

 }

}

4. Add a new button to the form named CancelButton with a caption of Cancel

5. Double-click the Cancel button and add the following event handler code:

private void CancelButton_Click(object sender,

 EventArgs e)

{

 if (_cts != null)

 {

 _cts.Cancel();

 }

}

6. Run the application, browse to and select a folder containing JPG files, click the Process JPGs
button, and immediately click the Cancel button. You should receive a message indicating that
processing has been canceled. No further records are processed.

Relationships between parallel tasks 131

We will learn more about canceling asynchronous and parallel work in Chapter 11. Now, let’s discuss
the Parallel.Invoke construct and relationships between tasks in the TPL.

Relationships between parallel tasks
In the previous chapter, Chapter 5, we learned how to use async and await to perform work in
parallel and manage the flow of tasks by using ContinueWith. In this section, we will examine some
of the TPL features that can be leveraged to manage relationships between tasks running in parallel.

Let’s start by looking deeper into the Parallel.Invoke method provided by the TPL.

Under the covers of Parallel.Invoke

In Chapter 2, we learned how to use the Parallel.Invoke method to execute multiple tasks in
parallel. We are going to revisit Parallel.Invoke now and discover what is happening under
the covers. Consider using it to invoke two methods:

Parallel.Invoke(DoFirstAction, DoSectionAction);

This is what is happening behind the scenes:

List<Task> taskList = new();

taskList.Add(Task.Run(DoFirstAction));

taskList.Add(Task.Run(DoSectionAction));

Task.WaitAll(taskList.ToArray());

Two tasks will be created and queued on the thread pool. Assuming the system has available resources,
the two tasks should be picked up and run in parallel. The calling method will block the current thread,
waiting for the parallel tasks to complete. The action will block the calling thread for the duration of
the longest-running task.

If this is acceptable for your application, using Parallel.Invoke makes the code cleaner and easy
to understand. However, if you don’t want to block the calling thread, there are a couple of options.
First, let’s make a change to the second example to use await:

List<Task> taskList = new();

taskList.Add(Task.Run(DoFirstAction));

taskList.Add(Task.Run(DoSectionAction));

await Task.WhenAll(taskList.ToArray());

Parallel Programming Concepts132

By awaiting Task.WhenAll instead of using Task.WaitAll, we’re allowing the current thread
to do other work while waiting for the two child tasks to finish processing in parallel. To achieve the
same result with Parallel.Invoke, we can wrap it in Task:

await Task.Run(() => Parallel.Invoke(DoFirstTask,

 DoSecondTask));

The same technique can be used with Parallel.For to avoid blocking the calling thread while
waiting for the loop to complete. This is not necessary for Parallel.ForEach. Instead of
wrapping Parallel.ForEach in Task, we can replace it with Parallel.ForEachAsync.
We learned earlier in this chapter that .NET 6 added Parallel.ForEachAsync, which returns
Task and can be awaited.

Next, let’s discuss how the relationship between parent tasks and their children can be managed.

Understanding parallel child tasks

When executing nested tasks, by default, the parent task will not wait for its child tasks unless we use
the Wait() method or await statements. However, this default behavior can be controlled with
some options when using Task.Factory.StartNew(). To illustrate the available options, we
are going to create a new sample project:

1. First, create a new C# console application named ParallelTaskRelationshipsSample.

2. Add a class to the project named ParallelWork. This is where we will create the parent
methods and their children.

3. Add the three following methods to the ParallelWork class. These will be our child methods.
Each one writes some console output when starting and completing. Delays are injected with
Thread.SpinWait. If you are unfamiliar with Thread.SpinWait, it puts the current
thread into a loop for the number of iterations specified, injecting a wait without removing the
thread from consideration with the scheduler:

public void DoFirstItem()

{

 Console.WriteLine("Starting DoFirstItem");

 Thread.SpinWait(1000000);

 Console.WriteLine("Finishing DoFirstItem");

}

public void DoSecondItem()

{

Relationships between parallel tasks 133

 Console.WriteLine("Starting DoSecondItem");

 Thread.SpinWait(1000000);

 Console.WriteLine("Finishing DoSecondItem");

}

public void DoThirdItem()

{

 Console.WriteLine("Starting DoThirdItem");

 Thread.SpinWait(1000000);

 Console.WriteLine("Finishing DoThirdItem");

}

4. Next, add a method named DoAllWork. This method will create a parent task that calls the
preceding three methods with child tasks. There is no code added to wait for the child tasks:

public void DoAllWork()

{

 Console.WriteLine("Starting DoAllWork");

 Task parentTask = Task.Factory.StartNew(() =>

 {

 var child1 = Task.Factory.StartNew

 (DoFirstItem);

 var child2 = Task.Factory.StartNew

 (DoSecondItem);

 var child3 = Task.Factory.StartNew

 (DoThirdItem);

 });

 parentTask.Wait();

 Console.WriteLine("Finishing DoAllWork");

}

5. Now, add some code to run DoAllWork from Program.cs:

using ParallelTaskRelationshipsSample;

var parallelWork = new ParallelWork();

parallelWork.DoAllWork();

Console.ReadKey();

Parallel Programming Concepts134

6. Run the program and examine the output. As you might expect, the parent task completes
before its children:

Figure 6.3 – The console application runs DoAllWork

7. Next, let’s create a method named DoAllWorkAttached. This method will run the
same three child tasks, but the child task will include the TaskCreationOptions.
AttachedToParent option:

public void DoAllWorkAttached()

{

 Console.WriteLine("Starting DoAllWorkAttached");

 Task parentTask = Task.Factory.StartNew(() =>

 {

 var child1 = Task.Factory.StartNew

 (DoFirstItem, TaskCreationOptions

 .AttachedToParent);

 var child2 = Task.Factory.StartNew

 (DoSecondItem, TaskCreationOptions

 .AttachedToParent);

 var child3 = Task.Factory.StartNew

 (DoThirdItem, TaskCreationOptions

 .AttachedToParent);

 });

 parentTask.Wait();

Relationships between parallel tasks 135

 Console.WriteLine("Finishing DoAllWorkAttached");

}

8. Update Program.cs to call DoAllWorkAttached instead of DoAllWork and run
the application again:

Figure 6.4 – Running our application and calling DoAllWorkAttached

You can see that even though we are not explicitly waiting for the child tasks, the parent task does
not complete until its children do.

Now, suppose you have another parent that should not wait for its child tasks, regardless of whether
they are started with the TaskCreationOptions.AttachedToParent option. Let’s create
a new method that can handle this scenario:

1. Create a method named DoAllWorkDenyAttach with the following code:

public void DoAllWorkDenyAttach()

{

 Console.WriteLine("Starting DoAllWorkDenyAttach");

 Task parentTask = Task.Factory.StartNew(() =>

 {

 var child1 = Task.Factory.StartNew

 (DoFirstItem, TaskCreationOptions

 .AttachedToParent);

Parallel Programming Concepts136

 var child2 = Task.Factory.StartNew

 (DoSecondItem, TaskCreationOptions

 .AttachedToParent);

 var child3 = Task.Factory.StartNew

 (DoThirdItem, TaskCreationOptions

 .AttachedToParent);

 }, TaskCreationOptions.DenyChildAttach);

 parentTask.Wait();

 Console.WriteLine("Finishing DoAllWork

 DenyAttach");

}

The child tasks are still being created with the AttachedToParent option, but the
parent task now has a DenyChildAttach option set. This will supersede the child
requests to attach to the parent.

2. Update Program.cs to call DoAllWorkDenyAttach and run the application once more:

Figure 6.5 – The console application calls DoAllWorkDenyAttach

You can see that DenyChildAttach did override the AttachToParent option set
on each child task. The parent completed without waiting for the children, as it did when
calling DoAllWork.

Common pitfalls with parallelism 137

One final note about this example. You may have noticed that we used Task.Factory.StartNew
instead of Task.Run, even when we didn’t need to set TaskCreationOption. That is because
Task.Run will prohibit any child tasks from attaching to a parent. If you used Task.Run for the
parent task in the DoAllWorkAttached method, the parent would have completed first, as it
did in the other methods.

Let’s finish up this chapter by covering some potential pitfalls when working with parallel programming
in .NET.

Common pitfalls with parallelism
When working with the TPL, there are some practices to avoid in order to ensure the best outcomes in
your applications. In some cases, parallelism used incorrectly can result in performance degradation.
In other cases, it can cause errors or data corruption.

Parallelism is not guaranteed

When using one of the parallel loops or Parallel.Invoke, the iterations can run in parallel, but
they are not guaranteed to do so. The code in these parallel delegates should be able to run successfully
in either scenario.

Parallel loops are not always faster

We discussed this earlier in this chapter, but it is important to remember that parallel versions of for
and foreach loops are not always faster. If each loop iteration runs quickly, the overhead of adding
parallelism can slow down your application.

This is important to remember when introducing any threading to applications. Always test your
code before and after introducing concurrency or parallelism to ensure that the performance gains
are worth the overhead of threading.

Beware of blocking the UI thread

Remember that Parallel.For and Parallel.ForEach are blocking calls. If you use them
on the UI thread, they will block the UI for the duration of the call. This blocking duration will be, at
a minimum, the duration of the longest-running loop iteration.

As we discussed in the previous section, you can wrap the parallel code in a call to Task.Run to
move the execution from the UI thread to a background thread on the thread pool.

Parallel Programming Concepts138

Thread safety

Do not make calls to .NET methods that are not thread-safe within parallel loops. The thread safety
of each .NET type is documented on Microsoft Docs. Use the .NET API browser to quickly find
information about specific .NET APIs: https://docs.microsoft.com/dotnet/api/.

Limit the use of static .NET methods in parallel loops, even if they are marked as thread-safe. They
will not cause errors or problems with data consistency, but they can negatively impact the loop
performance. Even calls to Console.WriteLine should only be used for testing or demonstration
purposes. Do not use these in production code.

UI controls

In Windows client applications, do not try to access UI controls within parallel loops. WinForms
and WPF controls can only be accessed from the thread on which they were created. You can use
Dispatcher.Invoke to invoke actions on other threads, but this will have performance
implications. It is best to update the UI after your parallel loops have been completed.

ThreadLocal data

Remember to take advantage of ThreadLocal variables in your parallel loops. We illustrated how
to do this in the Parallel loops with thread-local variables section earlier in this chapter.

That covers your introduction to parallel programming with C# and .NET. Let’s wrap up by reviewing
everything we have learned in the chapter.

Summary
In this chapter, we learned how to leverage parallel programming concepts in our .NET applications. We
got hands-on with Parallel.For, Parallel.ForEach, and Parallel.ForEachAsync
loops. In those sections, we learned how to safely aggregate data while maintaining thread safety. Next,
we learned how to manage relationships between parent tasks and their parallel children. This will
help to ensure your applications maintain an expected order of operations.

Finally, we covered some important pitfalls to avoid when implementing parallelism in our applications.
Developers will want to pay close attention to avoid any of these pitfalls in their own applications.

To read more about data parallelism in .NET, the Data Parallelism documentation on Microsoft
Docs is a great place to start: https://docs.microsoft.com/dotnet/standard/
parallel-programming/data-parallelism-task-parallel-library.

In the next chapter, we will continue our exploration of the TPL by learning how to leverage the
various building blocks included in the TPL Dataflow Library.

https://docs.microsoft.com/dotnet/api/
https://docs.microsoft.com/dotnet/standard/parallel-programming/data-parallelism-task-parallel-library
https://docs.microsoft.com/dotnet/standard/parallel-programming/data-parallelism-task-parallel-library

Questions 139

Questions
1. Which parallel loop executes a delegate in parallel for a given number of iterations?

2. Which parallel loop is the awaitable version of Parallel.ForEach?

3. Which parallel method can execute two or more provided actions in parallel?

4. Which Task.Factory.StartNew option can attach a child task’s completion to its parent?

5. Which Task.Factory.StartNew option can be provided to a parent task to prevent
any child tasks from attaching?

6. Why should you never use Task.Run when using TaskCreationOptions to establish
parent/child relationships?

7. Are parallel loops always faster than their traditional counterparts?

7
Ta s k P a r a l l e l L i b r a r y (T P L)

a n d D a t a f l o w

The Task Parallel Library (TPL) dataflow library contains building blocks to orchestrate asynchronous
workflows in .NET. This chapter will introduce the TPL Dataflow library, describe the types of
dataflow blocks in the library, and illustrate some common patterns for using dataflow blocks through
hands-on examples.

The dataflow library can be useful when processing large amounts of data in multiple stages or when
your application receives data in a continuous stream. The dataflow blocks provide a fantastic way of
implementing the producer/consumer design pattern.

To understand this, we will create a sample project that implements this pattern and examine other
real-world uses of the dataflow library.

Note
It’s important to know that the TPL Dataflow library isn’t distributed as part of the .NET runtime
or SDK. It’s available as a NuGet package from Microsoft. We will add it to our sample projects
with NuGet Package Explorer (NPE) in Visual Studio.

In this chapter, we will cover the following topics:

• Introducing the TPL Dataflow library

• Implementing the producer/consumer pattern

• Creating a data pipeline with multiple blocks

• Manipulating data from multiple data sources

By the end of this chapter, you will understand the purpose of each type of dataflow block and be able
to add the dataflow library to your projects, where appropriate.

Task Parallel Library (TPL) and Dataflow142

You will also know when dataflow blocks do not provide an advantage over simpler parallel programming
alternatives, such as Parallel.ForEach.

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for
Windows developers:

• Visual Studio 2022 version 17.0 or later

• .NET 6

• To complete the WPF sample, you will need to install the .NET desktop development workload
for Visual Studio

While these are recommended, if you have .NET 6 installed, you can use your preferred editor. For
example, Visual Studio 2022 for Mac on macOS 10.13 or later, JetBrains Rider, or Visual Studio Code
will work just as well.

The code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter07.

Let’s get started by discussing the TPL Dataflow library and why it can be a great way to implement
parallel programming in .NET.

Introducing the TPL Dataflow library
The TPL Dataflow library has been available for as long as TPL itself. It was released in 2010 after
.NET Framework 4.0 reached its RTM milestone. The members of the dataflow library are part of
the System.Threading.Tasks.Dataflow namespace. The dataflow library is intended to
build on the basics of parallel programming that are provided in TPL, expanding to address data flow
scenarios (hence the name of the library). The dataflow library is made up of foundational classes
called blocks. Each data flow block is responsible for a particular action or step in the overall flow.

The dataflow library consists of three basic types of blocks:

• Source blocks: These blocks implement the ISourceBlock<TOutput> interface. Source
blocks can have their data read from the workflow you define.

• Target blocks: This type of block implements the ITargetBlock<TInput> interface
and is a data receiver.

• Propagator blocks: These blocks act as both source and target. They implement the
IPropagatorBlock<TInput, TOutput> interface. Applications can read data
from these blocks and write to them.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter07
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter07
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter07

Introducing the TPL Dataflow library 143

When you connect multiple dataflow blocks to create a workflow, the resulting system is
referred to as a dataflow pipeline. You can connect a source block to a target block with the
ISourceBlock<TOutput>.LinkTo method. This is where propagator blocks can fit in the
middle of a pipeline. They can act as both the source and target of a link in the workflow. If a message
from a source block can be processed by more than one target, you can add filtering to examine the
properties of the object provided by the source to determine which target or propagator block should
receive the object.

The objects that are passed between dataflow blocks are commonly referred to as messages. You can
think of a dataflow pipeline as a network or messaging system. The units of data that flow through
the network are the messages. Each block is responsible for reading, writing, or transforming each
message in some way.

To send a message to a target block, you can use the Post method to send it synchronously or the
SendAsync method to send it asynchronously. In source blocks, messages can be received with the
Receive, TryReceive, and ReceiveAsync methods. The Receive and TryReceive
methods are both synchronous. The Choose method will monitor multiple source blocks for data
and return a message from the first source to provide data.

To offer a message from a source block to a target block, the source can call the OfferData method
of a target. The OfferData method returns a DataflowMessageStatus enum that has
several possible values:

• Accepted: The message was accepted and will be processed by the target.

• Declined: The message was declined by the target. The source block still owns the message and
cannot process its next message until the current message has been accepted by another target.

• DecliningPermanently: The message was declined, and the target is no longer available
for processing. All subsequent messages will be declined by the current target. Source blocks
will unlink from a target that returns this status.

• Postponed: Accepting the message has been postponed. It may be accepted by the target at
a later time. In this case, the source can wait or attempt to pass the message to an alternative
target block.

• NotAvailable: The message was no longer available when the target tried to accept it. This
can occur when the target attempts to accept a message after it had been postponed, but the
source block has already passed the message to a different target block.

Dataflow blocks support the concept of completion by providing a Complete method and a
Completion property. The Complete method is called to request completion on a block, while
the Completion property returns a Task, known as the block’s completion task. These completion
members are part of the IDataflowBlock interface, which is inherited by both ISourceBlock
and ITargetBlock.

Task Parallel Library (TPL) and Dataflow144

The completion task can be used to determine if a block has encountered an error or has been canceled.
Let’s see how:

1. The simplest way to handle errors encountered by a dataflow block is to call Wait on the
Completion property of the block and handle the AggregateException exception
type in the try/catch block:

try

{

 inputBlock.Completion.Wait();

}

catch (AggregateException ae)

{

 ae.Handle(e =>

 {

 Console.WriteLine($"Error processing input -

 {e.GetType().Name}: {e.Message}");

 });

}

2. If you want to do the same thing without using the blocking Wait call, you can await the
completion task and handle the Exception type:

try

{

 await inputBlock.Completion;

}

catch (Exception e)

{

 Console.WriteLine($"Error processing input -

 {e.GetType().Name}: {e.Message}");

}

3. Another alternative is to use the ContinueWith method on the completion task.
Inside the continuation block, you can check the status of the task to determine if it is Faulted
or Canceled:

try

{

 inputBlock.ContinueWith(task =>

Introducing the TPL Dataflow library 145

 {

 Console.WriteLink($"Task completed with a

 status of {task.Status}");

 });

 await inputBlock.Completion;

}

catch (Exception e)

{

 Console.WriteLine($"Error processing input -

 {e.GetType().Name}: {e.Message}");

}

We will see more comprehensive examples of dataflow block use when we create a sample project
using the producer/consumer pattern in the next section. Before we examine the types of dataflow
blocks, let’s discuss why Microsoft created the library.

Why use the TPL Dataflow library?

The TPL dataflow library was created by Microsoft as a means of orchestrating asynchronous data
processing workflows. Data flows into the first dataflow block in the pipeline from a data source. The
source can be a database, a local or network folder, a camera, or just about any other type of input device
that .NET can access. One or more blocks can be part of the pipeline, with each being responsible for
a single operation. The following diagram illustrates two abstractions of dataflow pipelines:

Figure 7.1 – Dataflow pipeline examples

Task Parallel Library (TPL) and Dataflow146

One real-world example you can consider is using a webcam to capture image frames. In a two-step
flow, as shown in Example 1, consider the webcam as Data Input. Dataflow Block 1 could perform
some image processing to optimize the image appearance, while Dataflow Block 2 will call an Azure
Cognitive Services API to identify objects in each image. Result would contain a new .NET class for
each input image containing the image binary data and properties that contain the identified objects
within each image.

Next, let’s learn about the types of blocks available in the dataflow library.

Types of dataflow blocks

There are nine predefined blocks in the dataflow library. These can be divided into three different
categories. The first category is buffering blocks.

Buffering blocks

The purpose of buffering blocks is to buffer input data to be consumed. Buffering blocks are all propagator
blocks, meaning they can be both a data source and target in a dataflow pipeline. There are three types
of buffering blocks: BufferBlock<T>, BroadcastBlock<T>, and WriteOnceBlock<T>.

BufferBlock

BufferBlock<T> is an asynchronous queuing mechanism that implements a first-in, first-
out (FIFO) queue of objects. BufferBlock can have multiple data sources and multiple targets
configured. However, each message in a BufferBlock can only be delivered to one target block.
The message is removed from the queue after it has been successfully delivered.

The following snippet pushes customer names into a BufferBlock and subsequently reads the
first five names out to the console:

BufferBlock<string> customerBlock = new();

foreach (var customer in customers)

{

 await customerBlock.SendAsync(customer.Name);

}

for (int i = 0; i < 5; i++)

{

 Console.WriteLine(await customerBlock.ReceiveAsync());

}

// The code could display the following output:

// Robert Jones

// Jita Smith

Introducing the TPL Dataflow library 147

// Patty Xu

// Sam Alford

// Melissa Allen

BroadcastBlock

BroadcastBlock<T> is used similarly to BufferBlock, but it is intended to provide only
the most recently posted message available to consumers. It can also be used to send the same value
to many consumers. The message that’s posted to a BroadcastBlock is not removed after it has
been received by a consumer.

The following snippet will read the same alert message each time the Receive method is called:

var alertBlock = new BroadcastBlock<string>(null);

alertBlock.Post("Network is unavailable!");

for (int i = 0; i < 5; i++)

{

 Console.WriteLine(alertBlock.Receive());

}

WriteOnceBlock

As the name suggests, WriteOnceBlock<T> can only be written to once. After the first message
has been received, all calls to Post or SendAsync will be ignored by the block. No exceptions will
be thrown. The data is simply discarded.

The following example is similar to our BufferBlock snippet. However, because we’re now using
a WriteOnceBlock, only the first customer’s name will be accepted by the block:

WriteOnceBlock<string> customerBlock = new();

foreach (var customer in customers)

{

 await customerBlock.SendAsync(customer.Name);

}

Console.WriteLine(await customerBlock.ReceiveAsync());

Execution blocks

Execution blocks are blocks that execute a delegate method for each message that’s received. There are
three types of execution blocks in the dataflow library. ActionBlock<TInput> is a target block,
while TransformBlock<TInput, TOuput> and TransformManyBlock<TInput,
TOutput> are both propagator blocks.

Task Parallel Library (TPL) and Dataflow148

ActionBlock

ActionBlock is a block that accepts either Action<T> or Func<TInput, Task> as its
constructor. An action on an input message is considered complete when the action returns or the task
of Func completes. You can use an action for synchronous delegates or Func for async operations.

In this snippet, we will output customer names to the console with Console.WriteLine, which
is provided in an Action, to the block:

var customerBlock = new ActionBlock<string>(name =>

 Console.WriteLine(name));

foreach (var customer in customers)

{

 await customerBlock.SendAsync(customer.Name);

}

customerBlock.Complete();

await customerBlock.Completion;

TransformBlock

TransformBlock<TInput, TOutput> is similar to ActionBlock. However, as a propagator
block, it returns an output value for each message that’s received. The two possible delegate signatures
that can be provided to the TransformBlock constructor are Func<TInput, TOutput> for
synchronous operations and Func<TInput, Task<TOutput>> for asynchronous operations.

The following example uses a TransformBlock that will convert a customer name into all capitals
before the first five output values are retrieved to be displayed on the console:

var toUpperBlock = new TransformBlock<string, string>(name

 => name.ToUpper());

foreach (var customer in customers)

{

 toUpperBlock.Push(customer.Name);

}

for (int i = 0; i < 5; i++)

{

 Console.WriteLine(toUpperBlock.Receive());

}

TransformManyBlock

TransformManyBlock<TInput, TOutput> is similar to TransformBlock except that
the block can return one or more values for every input value that’s received. The possible delegate

Introducing the TPL Dataflow library 149

signatures for TransformManyBlock are Func<TInput, IEnumerable<TOutput>>
and Func<TInput, Task<IEnumerable<TOutput>>> for synchronous and asynchronous
operations, respectively.

In this snippet, we will pass one customer name to TransformManyBlock, which will return an
enumerable containing the individual characters in the customer’s name:

var nameCharactersBlock = new TransformManyBlock<string,

 char>(name => name.ToCharArray());

nameCharactersBlock.Post(customerName);

for (int i = 0; i < (customerName.Length; i++)

{

 Console.WriteLine(nameCharactersBlock.Receive());

}

Grouping blocks

Grouping blocks can combine objects from one or more sources. There are three types of
grouping blocks. BatchBlock<T> is a propagator block, while JoinBlock<T1, T2> and
BatchedJoinBlock<T1, T2> are both source blocks.

BatchBlock

BatchBlock accepts batches of data and produces arrays of output data. When creating a
BatchBlock, you specify the input batch size. BatchBlock has a Greedy property in the
dataflowBlockOptions optional constructor parameter that specifies the greedy mode:

• When Greedy is true, which is its default value, the block continues processing every input
value as it is received and outputs an array as the batch size is reached.

• When Greedy is false, incoming messages can be paused while an array of the batch size
is being created.

Greedy mode usually performs better, but if you are coordinating input from multiple sources, you
may need to use non-greedy mode.

In this example, BatchBlock separates student names into classes with a maximum size of 12:

var studentBlock = new BatchBlock<string>(12);

// Assume studentList contains 20 students.

foreach (var student in studentList)

{

 studentBlock.Post(student.Name);

Task Parallel Library (TPL) and Dataflow150

}

// Signal that we are done adding items.

studentBlock.Complete();

// Print the size of each class.

Console.WriteLine($"The number of students in class 1 is {

 studentBlock.Receive().Count()}."); // 12 students

Console.WriteLine($"The number of students in class 2 is {

 studentBlock.Receive().Count()}."); // 8 students

JoinBlock

JoinBlock has two signatures: JoinBlock<T1, T2> and JoinBlock<T1, T2, T3>.
JoinBlock<T1, T2> has Target1 and Target2 properties to accept inputs and returns a
Tuple<T1, T2> as each pair of targets is filled. JoinBlock<T1, T2, T3> has Target1,
Target2, and Target3 properties and returns a Tuple<T1, T2, T3> as each set of targets
is completed.

JoinBlock also has greedy and non-greedy modes, with greedy mode being the default behavior.
When you switch to non-greedy mode, all input is postponed to targets that have already received
input until a complete output set is populated and sent as output.

In this example, we will create a JoinBlock to combine a person’s first name, last name, and age
into the output tuple:

var joinBlock = new JoinBlock<string, string, int>();

joinBlock.Target1.Post("Sally");

joinBlock.Target1.Post("Raj");

joinBlock.Target2.Post("Jones");

joinBlock.Target2.Post("Gupta");

joinBlock.Target3.Post(7);

joinBlock.Target3.Post(23);

for (int i = 0; i < 2; i++)

{

 var data = joinBlock.Receive();

 if (data.Item3 < 18)

 {

 Console.WriteLine($"{data.Item1} {data.Item2} is a

 child.");

 }

 else

Implementing the producer/consumer pattern 151

 {

 Console.WriteLine($"{data.Item1} {data.Item2} is

 an adult.");

 }

}

BatchedJoinBlock

A BatchedJoinBlock is like a JoinBlock except the tuple in the output contains IList
items of the size of the batch specified in the constructor: Tuple(IList(T1), IList(T2))
or Tuple(IList(T1), IList(T2), IList(T3)). The batching concept is the same as
it is for BatchBlock.

As an exercise, try to build on the JoinBlock example to add more people to the list, divide them
into batches of four, and output the name of the oldest person in each batch.

Now that we have explored examples of all of the available dataflow blocks, let’s get into some real-
world dataflow examples. In the next section, we will use some dataflow blocks to create a producer/
consumer implementation.

Implementing the producer/consumer pattern
The blocks in the TPL Dataflow library provide a fantastic platform for implementing the producer/
consumer pattern. If you are not familiar with this design pattern, it involves two operations and a
queue of work. The producer is the first operation. It is responsible for filling the queue with data or
units of work. The consumer is responsible for taking items from the queue and acting on them in some
way. There can be one or more producers and one or more consumers in the system. You can change
the number of producers or consumers, depending on which part of the process is the bottleneck.

Real-World Scenario Example
To relate the producer/consumer pattern to a real-world scenario, think about preparing gifts
for a holiday gathering. You and a partner are working together to prepare the gifts. You are
fetching and staging the gifts to be wrapped. You are the producer. Your partner is taking items
from your queue and wrapping each gift. They are the consumer. If the queue starts to get
backed up, you can find another friend (or consumer) to help with the wrapping and increase
the overall throughput. If, on the other hand, you are taking too much time to find each gift to
be wrapped, you can add another producer to help find them and fill the queue. This will keep
the consumers busy and increase the efficiency of the process.

In our .NET producer/consumer example, we are going to build a simple WPF application that fetches
blog posts from multiple RSS feeds and displays them in a single ListView control. Each row in
the list will include the blog post’s date, categories, and an HTML summary of the post’s content. The

Task Parallel Library (TPL) and Dataflow152

producers in the application will fetch posts from an RSS feed and add a SyndicationItem to
the queue for each blog post. We will get posts from three blogs and create a producer for each.

The consumers will take a SyndicationItem from the queue and use an ActionBlock delegate
to create a BlogPost object for each SyndicationItem. We will create three consumers to
keep up with the items that have been queued by our three producers. When the process completes,
the list of BlogPost objects will be set as ItemSource for ListView. Let’s get started:

1. Start by creating a new WPF project with .NET 6. Name the project
ProducerConsumerRssFeeds.

2. Open NuGet Package Manager for the solution, search for Syndication on the Install tab, and
add the System.ServiceModel.Syndication package to the project. This package will make it
simple to fetch data from any RSS feed.

3. Add a new class to the project named BlogPost. This will be our model object for each blog
post to be displayed in ListView. Add the following properties to the new class:

public class BlogPost

{

 public string PostDate { get; set; } = "";

 public string? Categories { get; set; }

 public string? PostContent { get; set; }

}

4. Now, it’s time to create a service class to fetch the blog posts for a given RSS feed URL. Add a new
class named RssFeedService to the project and add a method named GetFeedItems
to the class:

using System.Collections.Generic;

using System.ServiceModel.Syndication;

using System.Xml;

...

public static IEnumerable<SyndicationItem>

 GetFeedItems(string feedUrl)

{

 using var xmlReader = XmlReader.Create(feedUrl);

 SyndicationFeed rssFeed = SyndicationFeed.Load

 (xmlReader);

 return rssFeed.Items;

}

Implementing the producer/consumer pattern 153

The static SyndicationFeed.Load method uses XmlReader to fetch the XML from
the provided feedUrl and transform it into IEnumerable<SyndicationItem> to
return from the method.

5. Next, create a new class named FeedAggregator. This class will contain the producer/
consumer logic that calls GetFeedItems for each blog and transforms the feed data for
each blog post so that it can be displayed in the UI. The three blogs that we are aggregating
are as follows:

 � The .NET blog

 � The Windows blog

 � The Microsoft 365 blog

The first step with FeedAggregator is creating a producer method named
ProduceFeedItems and a parent method named QuseueAllFeeds that will start
three instances of the producer method:

private async Task QueueAllFeeds(BufferBlock

 <SyndicationItem> itemQueue)

{

 Task feedTask1 = ProduceFeedItems(itemQueue,

 "https://devblogs.microsoft.com/dotnet/feed/");

 Task feedTask2 = ProduceFeedItems(itemQueue,

 "https://blogs.windows.com/feed");

 Task feedTask3 = ProduceFeedItems(itemQueue,

 "https://www.microsoft.com/microsoft-

 365/blog/feed/");

 await Task.WhenAll(feedTask1, feedTask2,

 feedTask3);

 itemQueue.Complete();

}

private async Task ProduceFeedItems

 (BufferBlock<SyndicationItem> itemQueue, string

 feedUrl)

{

 IEnumerable<SyndicationItem> items =

 RssFeedService.GetFeedItems(feedUrl);

 foreach (SyndicationItem item in items)

 {

Task Parallel Library (TPL) and Dataflow154

 await itemQueue.SendAsync(item);

 }

}

We are using BufferBlock<SyndicationItem> as our queue. Every producer
calls GetFeedItems and adds each SyndicationItem that’s returned to
BufferBlock. The QueueAllFeeds method uses Task.WhenAll to wait for all of
the producers to finish adding items to the queue. Then, it signals to BufferBlock that
all the producers are done by calling itemQueue.Complete().

6. Next, we will create our consumer method. This method, named ConsumeFeedItem, will be
responsible for taking a SyndicationItem provided by BufferBlock and converting it
into a BlogPost object. Each BlogPost will be added to ConcurrentBag<BlogPost>.
We’re using a thread-safe collection here because there will be multiple consumers adding
output to the list:

private void ConsumeFeedItem(SyndicationItem nextItem,

 ConcurrentBag<BlogPost> posts)

{

 if (nextItem != null && nextItem.Summary != null)

 {

 BlogPost newPost = new();

 newPost.PostContent = nextItem.Summary.Text

 .ToString();

 newPost.PostDate = nextItem.PublishDate

 .ToLocalTime().ToString("g");

 if (nextItem.Categories != null)

 {

 newPost.Categories = string.Join(",",

 nextItem.Categories.Select(c =>

 c.Name));

 }

 posts.Add(newPost);

 }

}

7. Now, it’s time to tie the producer/consumer logic together. Create a method named
GetAllMicrosoftBlogPosts:

public async Task<IEnumerable<BlogPost>>

 GetAllMicrosoftBlogPosts()

Implementing the producer/consumer pattern 155

{

 var posts = new ConcurrentBag<BlogPost>();

 // Create queue of source posts

 BufferBlock<SyndicationItem> itemQueue = new(new

 DataflowBlockOptions { BoundedCapacity =

 10 });

 // Create and link consumers

 var consumerOptions = new Execution

 DataflowBlockOptions { BoundedCapacity = 1 };

 var consumerA = new ActionBlock<SyndicationItem>

 ((i) => ConsumeFeedItem(i, posts),

 consumerOptions);

 var consumerB = new ActionBlock<SyndicationItem>

 ((i) => ConsumeFeedItem(i, posts),

 consumerOptions);

 var consumerC = new ActionBlock<SyndicationItem>

 ((i) => ConsumeFeedItem(i, posts),

 consumerOptions);

 var linkOptions = new DataflowLinkOptions {

 PropagateCompletion = true, };

 itemQueue.LinkTo(consumerA, linkOptions);

 itemQueue.LinkTo(consumerB, linkOptions);

 itemQueue.LinkTo(consumerC, linkOptions);

 // Start producers

 Task producers = QueueAllFeeds(itemQueue);

 // Wait for producers and consumers to complete

 await Task.WhenAll(producers, consumerA.Completion,

 consumerB.Completion, consumerC.Completion);

 return posts;

}

I. The method starts by creating a ConcurrentBag<BlogPost> to aggregate the final list
of posts for the UI. Then, it creates the itemQueue object with a BoundedCapacity
of 10. This bounded capacity means that no more than 10 items can be enqueued at
any time. Once the queue reaches 10, all the producers must wait for the consumers
to dequeue some items. This can slow the performance of the process, but it prevents
potential out-of-memory issues in production code. Our sample is not in any danger of

Task Parallel Library (TPL) and Dataflow156

running out of memory when processing posts from three blogs, but you can see how
to use BoundedCapacity when it is needed in your applications. You can create
the queue with no BoundedCapacity like this:

BufferBlock<SyndicationItem> itemQueue = new();

II. T h e n e x t p ar t o f t h e m e t h o d c re at e s t h re e c ons u m e r s t h at u s e
ActionBlock<SyndicationItem> with ConsumeFeedItem as the
provided delegate. Each consumer is linked to the queue with the LinkTo method.
Setting BoundedCapacity of the consumers to 1 tells the producers to move on to
the next consumer if the current one is already busy processing an item.

III. Once the links have been established, we can start the producers by calling
QueueAllFeeds. Then, we must await the producers and the Completion
object of each consumer ActionBlock. By linking the completion of the producers
and consumers, we don’t need to explicitly await the Completion object of
the consumers:

var linkOptions = new DataflowLinkOptions {

 PropagateCompletion = true, };

8. The next step is to create some UI controls to display the information to our users. Open the
MainWindow.xaml file and replace the existing Grid with the following markup:

<Grid>

 <ListView x:Name="mainListView">

 <ListView.ItemTemplate>

 <DataTemplate>

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition

 Width="150"/>

 <ColumnDefinition

 Width="300"/>

 <ColumnDefinition

 Width="500"/>

 </Grid.ColumnDefinitions>

 <TextBlock Grid.Column="0"

 Text="{Binding PostDate}"

 Margin="3"/>

 <TextBox IsReadOnly="True"

Implementing the producer/consumer pattern 157

 Grid.Column="1"

 Text="{Binding Categories}"

 Margin="3"

 TextWrapping="Wrap"/>

 <TextBox IsReadOnly="True"

 Grid.Column="2"

 Text="{Binding PostContent}"

 Margin="3"/>

 </Grid>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</Grid>

Explaining the details of WPF, XAML, and data binding are outside the scope of
this book. If you would like to learn more about WPF, check out Mastering Windows
Presentation Foundation, by Sheridan Yeun: https://www.packtpub.com/
product/mastering-windows-presentation-foundation-second-
edition/9781838643416. What this markup does is create a new ListView
control with a DataTemplate to define the structure of each list item in the control. For
each item, we are defining either a TextBlock or TextBox to hold the values for each
BlogPost object in the list.

9. The last thing we must do is call the GetAllMicrosoftBlogPosts method and populate
the UI. Open MainWindow.xaml.cs and add the following code:

public MainWindow()

{

 InitializeComponent();

 Loaded += MainWindow_Loaded;

}

private async void MainWindow_Loaded(object sender,

 RoutedEventArgs e)

{

 FeedAggregator aggregator = new();

 var items = await aggregator

 .GetAllMicrosoftBlogPosts();

 mainListView.ItemsSource = items;

}

https://www.packtpub.com/product/mastering-windows-presentation-foundation-second-edition/9781838643416
https://www.packtpub.com/product/mastering-windows-presentation-foundation-second-edition/9781838643416
https://www.packtpub.com/product/mastering-windows-presentation-foundation-second-edition/9781838643416

Task Parallel Library (TPL) and Dataflow158

After MainWindow has loaded, the items that have been returned from
GetAllMicrosoftBlogPosts are set as mainListView.ItemsSource.
This will allow the data to bind to the elements in DataTemplate, which we defined
in the XAML.

10. Now, run the project and see how things look:

Figure 7.2 – Running the ProducerConsumerRssFeeds WPF application for the first time

As you can see, the list displays 10 blog post summaries from each of the Microsoft blogs.
This is the default maximum number of items that can be returned by Microsoft’s blogs.

You can try experimenting by increasing or decreasing the number of producers and consumers in
the project. Does adding more consumers speed up the process? Try adding some of your favorite
blogs’ feeds to the list of producers and see what happens.

Note
You may have noticed that the content summary that’s returned by the RSS feeds contains
HTML, and we are just rendering it as plain text in a TextBox control. If you would like to
use a RichTextBox that renders the HTML properly, take a look at this sample project on
CodeProject that uses a WPF Behavior to render HTML in a RichTextBox: https://
www.codeproject.com/articles/1097390/displaying-html-in-a-
wpf-richtextbox.

In the next section, we will create another example that uses different types of dataflow blocks to
create a data pipeline.

https://www.codeproject.com/articles/1097390/displaying-html-in-a-wpf-richtextbox
https://www.codeproject.com/articles/1097390/displaying-html-in-a-wpf-richtextbox
https://www.codeproject.com/articles/1097390/displaying-html-in-a-wpf-richtextbox

Creating a data pipeline with multiple blocks 159

Creating a data pipeline with multiple blocks
One of the biggest advantages of using dataflow blocks is the ability to link them and create a complete
workflow or data pipeline. In the previous section, we saw how this linking worked between producer
and consumer blocks. In this section, we will create a console application with a pipeline of five
dataflow blocks all linked together to complete a series of tasks. We will leverage TransformBlock,
TransformManyBlock, and ActionBlock to take an RSS feed and output a list of categories
that are unique across all blog posts in the feed. Follow these steps:

1. Start by creating a new .NET 6 console application in Visual Studio named
OutputBlogCategories.

2. Add the System.ComponentModel.Syndication NuGet package that we used in the
previous example.

3. Add the same RssFeedService class from the previous example. You can right-click on
the project in Solution Explorer and select Add | Existing Item or you can create a new class
named RssFeedService and copy/paste the same code we used in the previous example.

4. Add a new class named FeedCategoryTransformer to the project and create a method
named GetCategoriesForFeed:

public static async Task GetCategoriesForFeed(string

 url)

{

}

5. Over the next few steps, we will create the implementation for the GetCategoriesForFeed
method. First, create a TransformBlock named downloadFeed that accepts url as
a string and returns IEnumerable<SyndicationItem> from the GetFeedItems
method:

// Downloads the requested blog posts.

var downloadFeed = new TransformBlock<string,

 IEnumerable<SyndicationItem>>(url =>

{

 Console.WriteLine("Fetching feed from '{0}'...",

 url);

 return RssFeedService.GetFeedItems(url);

});

Task Parallel Library (TPL) and Dataflow160

6. Next, create a TransformBlock that accepts IEnumerable<SyndicationItem>
and returns List<SyndicationCategory>. This block will fetch the complete list of
categories from every blog post and return them as a single list:

// Aggregates the categories from all the posts.

var createCategoryList = new TransformBlock

 <IEnumerable<SyndicationItem>, List

 <SyndicationCategory>>(items =>

{

 Console.WriteLine("Getting category list...");

 var result = new List<SyndicationCategory>();

 foreach (var item in items)

 {

 result.AddRange(item.Categories);

 }

 return result;

});

7. Now, create another TransformBlock. This block will accept
List<SyndicationCategory> from the previous block, remove all
duplicates, and return the filtered List<SyndicationCategory>:

// Removes duplicates.

var deDupList = new TransformBlock<List

 <SyndicationCategory>, List<SyndicationCategory>>

 (categories =>

{

 Console.WriteLine("De-duplicating category

 list...");

 var categoryComparer = new CategoryComparer();

 return categories.Distinct(categoryComparer)

 .ToList();

});

To use the LINQ Distinct extension method on a complex object such
as SyndicationCategory, a custom comparer that implements
IEqualityComparer<T> is required. You can get the complete source for
CategoryComparer from this chapter’s GitHub repository: https://github.
com/PacktPublishing/Parallel-Programming-and-Concurrency-
with-C-sharp-10-and-.NET-6/tree/main/chapter07.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter07
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter07
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter07

Creating a data pipeline with multiple blocks 161

8. Next, create a TransformManyBlock named createCategoryString. This block
will accept the de-duplicated List<SyndicationCategory> and return a string for
each Name property of the categories. So, the block is invoked once for the entire list, but it
will, in turn, invoke the next block in the flow once for every item in the list:

// Gets the category names from the list of category

 objects.

var createCategoryString = new TransformManyBlock

 <List<SyndicationCategory>, string>(categories =>

{

 Console.WriteLine("Extracting category names...");

 return categories.Select(c => c.Name);

});

9. The final block is an ActionBlock named printCategoryInCaps. This block will
output each category name to the console in all caps using ToUpper:

// Prints the upper-cased unique categories to the

 console.

var printCategoryInCaps = new ActionBlock<string>

 (categoryName =>

{

 Console.WriteLine($"Found CATEGORY

 {categoryName.ToUpper()}");

});

10. Now that the dataflow blocks have been configured, it’s time to link them. Create a
DataflowLinkOptions that will propagate the completion of each block. Then, use the
LinkTo method to link each block in the chain to the next one:

var linkOptions = new DataflowLinkOptions {

 PropagateCompletion = true };

downloadFeed.LinkTo(createCategoryList, linkOptions);

createCategoryList.LinkTo(deDupList, linkOptions);

deDupList.LinkTo(createCategoryString, linkOptions);

createCategoryString.LinkTo(printCategoryInCaps,

 linkOptions);

Task Parallel Library (TPL) and Dataflow162

11. The last few steps of creating the GetCategoriesForFeed method involve sending
url to the first block, marking it as Complete, and waiting for the last block in the chain:

await downloadFeed.SendAsync(url);

downloadFeed.Complete();

await printCategoryInCaps.Completion;

12. Now, open Program.cs and update the code so that it calls GetCategoriesForFeed,
providing the URL for the Windows blog RSS feed:

using OutputBlogCategories;

Console.WriteLine("Hello, World!");

await FeedCategoryTransformer.GetCategoriesForFeed

 ("https://blogs.windows.com/feed");

Console.ReadLine();

13. Run the program and examine the list of categories in the output:

Figure 7.3 – Displaying a deduplicated list of categories from the Windows blog feed

Now that you understand how to create a data pipeline with a series of dataflow blocks, we will look
at an example of combining data from multiple sources with a JoinBlock.

Manipulating data from multiple data sources 163

Manipulating data from multiple data sources
A JoinBlock can be configured to receive different data types from two or three data sources. As
each set of data types is completed, the block is completed with a Tuple containing all three object
types to be acted upon. In this example, we will create a JoinBlock that accepts a string and
int pair and passes Tuple(string, int) along to an ActionBlock, which outputs their
values to the console. Follow these steps:

1. Start by creating a new console application in Visual Studio

2. Add a new class named DataJoiner to the project and add a static method to the class
named JoinData:

public static void JoinData()

{

}

3. Add the following code to create two BufferBlock objects, a JoinBlock<string,
int>, and an ActionBlock<Tuple<string, int>>:

var stringQueue = new BufferBlock<string>();

var integerQueue = new BufferBlock<int>();

var joinStringsAndIntegers = new JoinBlock<string,

 int>(

 new GroupingDataflowBlockOptions

 {

 Greedy = false

 });

var stringIntegerAction = new ActionBlock

 <Tuple<string, int>>(data =>

{

 Console.WriteLine($"String received:

 {data.Item1}");

 Console.WriteLine($"Integer received:

 {data.Item2}");

});

Setting the block to non-greedy mode means it will wait for an item of each type before
executing the block.

Task Parallel Library (TPL) and Dataflow164

4. Now, create the links between the blocks:

stringQueue.LinkTo(joinStringsAndIntegers.Target1);

integerQueue.LinkTo(joinStringsAndIntegers.Target2);

joinStringsAndIntegers.LinkTo(stringIntegerAction);

5. Next, push some data to the two BufferBlock objects, wait for a second, and then mark
them both as complete:

stringQueue.Post("one");

stringQueue.Post("two");

stringQueue.Post("three");

integerQueue.Post(1);

integerQueue.Post(2);

integerQueue.Post(3);

stringQueue.Complete();

integerQueue.Complete();

Thread.Sleep(1000);

Console.WriteLine("Complete");

6. Add the following code to Program.cs to run the example code:

using JoinBlockExample;

DataJoiner.JoinData();

Console.ReadLine();

7. Finally, run the application and examine the output. You will see that ActionBlock outputs
a string and integer pair for each set of values provided:

Figure 7.4 – Running the JoinBlockExample console application

Summary 165

That’s all there is to using the JoinBlock dataflow block. Try making some changes on your own,
such as changing the Greedy option or the order in which data is added to each BufferBlock.
How does that impact the output?

Before we finish up this chapter, let’s review everything we’ve learned.

Summary
In this chapter, we learned all about the various blocks in the TPL Dataflow library. We started by
learning a little about each block type and providing a brief code snippet for each. Next, we created
a practical example that implemented the producer/consumer pattern to fetch blog data from three
different Microsoft blogs. We also examined TransformBlock, TransformManyBlock, and
JoinBlock more closely in .NET console applications. You should now feel confident in your ability
to use some of the dataflow blocks in your applications to automate some complex data workflows.

If you would like some additional reading about the TPL Dataflow library, you can download Introduction
to TPL Dataflow from the Microsoft Download Center: https://www.microsoft.com/
en-us/download/details.aspx?id=14782.

In the next chapter, Chapter 8, we will take a closer look at the collections in the System.
Collections.Concurrent namespace. We will also discover some practical uses of PLINQ
in modern .NET applications.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What type of data flow block aggregates data from two or three data sources?

2. What type of block is a BufferBlock?

3. What type of block is populated by a producer in the producer/consumer pattern?

4. What method links the completion of two blocks?

5. What method is called to signal that our code is done adding data to a source block?

6. What is the async equivalent of calling Post()?

7. What is the async equivalent of calling Receive()?

https://www.microsoft.com/en-us/download/details.aspx?id=14782
https://www.microsoft.com/en-us/download/details.aspx?id=14782

8
P a r a l l e l D a t a S t r u c t u r e s

a n d P a r a l l e l L I N Q

.NET provides many useful features and data constructs for developers who are introducing parallelism
to their projects. This chapter will explore these features, including concurrent collections, the
SpinLock<T> synchronization primitive, and Parallel LINQ (PLINQ). These features can improve
the performance of your applications while maintaining safe threading practices.

Most .NET developers are familiar with LINQ frameworks, including LINQ to Objects, LINQ to
SQL, and LINQ to XML. There are even open source .NET LINQ libraries, such as LINQ to Twitter
(https://github.com/JoeMayo/LinqToTwitter). We will take those LINQ skills and
leverage them in parallel programming with PLINQ. Every LINQ developer can be a PLINQ developer
after reading this chapter. Read ahead for some useful examples of working with PLINQ in C#.

In this chapter, you will learn about the following:

• Introducing PLINQ

• Converting LINQ queries to PLINQ

• Preserving data order and merging data with PLINQ

• Data structures for parallel programming in .NET

By the end of this chapter, you will have a new appreciation for LINQ when it comes to
parallel programming.

https://github.com/JoeMayo/LinqToTwitter

Parallel Data Structures and Parallel LINQ168

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for
Windows developers:

• Visual Studio 2022 version 17.0 or later.

• .NET 6.

• To complete the WPF sample, you will need to install the .NET desktop development workload
for Visual Studio.

While these are recommended, if you have .NET 6 installed, you can use your preferred editor. For
example, Visual Studio 2022 for Mac on macOS 10.13 or later, JetBrains Rider, or Visual Studio Code
will work just as well.

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter08.

Let’s get started by discussing LINQ, PLINQ, and why the query language can be a great way to improve
your parallel programming with C#.

Introducing PLINQ
PLINQ is a set of .NET extensions for LINQ that allow part of the LINQ query to execute in parallel
by leveraging the thread pool. The PLINQ implementation provides parallel versions of all of the
available LINQ query operations.

Like LINQ queries, PLINQ queries offer deferred execution. This means that the objects are not queried
until they need to be enumerated. If you aren’t familiar with LINQ’s deferred execution, we will look
at a simple example to illustrate the concept. Consider these two LINQ queries:

internal void QueryCities(List<string> cities)

{

 // Query is executed with ToList call

 List<string> citiesWithS = cities.Where(s =>

 s.StartsWith('S')).ToList();

 // Query is not executed here

 IEnumerable<string> citiesWithT = cities.Where(s =>

 s.StartsWith('T'));

 // Query is executed here when enumerating

 foreach (string city in citiesWithT)

 {

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter08
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter08
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter08

Introducing PLINQ 169

 // Do something with citiesWithT

 }

}

In the example, the LINQ query that populates citiesWithS is executed immediately because of
the call to ToList(). The second query that populates citiesWithT is not immediately executed.
The execution is deferred until the IEnumerable values are required. The citiesWithT values
are not required until we iterate over them in the foreach loop. The same principle holds true for
PLINQ queries.

Note
If you are unfamiliar with LINQ concepts or the LINQ method syntax, the book C# 10 and .NET
6 – Modern Cross-Platform Development – Sixth Edition by Mark J. Price has a chapter dedicated
to explaining LINQ syntax and several of its implementations. It is an excellent book for every
.NET developer. You can find out more about the book here: https://subscription.
packtpub.com/product/mobile/9781801077361.

PLINQ is similar to LINQ in other ways, too. You can create PLINQ queries on any collection that
implements IEnumerable or IEnumerable<T>. You can use all of the familiar LINQ operations
such as Where, FirstOrDefault, Select, and so on. The primary difference is that PLINQ
attempts to leverage the power of parallel programming by part or all of a query across multiple
threads. Internally, PLINQ partitions the in-memory data into multiple segments and performs the
query on each segment in parallel.

There are several factors that impact the performance gained by using PLINQ. Let’s explore those next.

PLINQ and performance

When deciding which LINQ queries are good candidates to leverage the power of PLINQ, you must
consider a number of factors. The primary factor to consider is whether the magnitude or complexity of
the work to be performed is great enough to offset the overhead of threading. You should be operating
on a large dataset and be performing an expensive operation on each item in the collection. The LINQ
example that checked the first letter of a string is not a very good candidate for PLINQ, especially if
the source collection only contains a handful of items.

Another factor in the performance to potentially be gained with PLINQ is the number of cores available
on the system where the queries will be running. The greater the number of cores that PLINQ can
leverage, the better the potential gain. PLINQ can break down a large dataset into more units of work
to be executed in parallel with many cores at its disposal.

https://subscription.packtpub.com/product/mobile/9781801077361
https://subscription.packtpub.com/product/mobile/9781801077361

Parallel Data Structures and Parallel LINQ170

Ordering and grouping data can incur a larger amount of overhead than it would in a traditional LINQ
query. The PLINQ data is segmented, but grouping and ordering must be performed across the entire
collection. PLINQ is best suited for queries where the data sequence is not important.

We will discuss some other factors that impact query performance in the Preserving data order and
merging data with PLINQ section. Now, let’s start creating our first PLINQ queries.

Creating a PLINQ query

The majority of the functionality of PLINQ is exposed through members of the System.Linq.
ParallelEnumerable class. This class contains implementations of all of the LINQ operators
that are available to in-memory object queries. There are some additional operators in this class that
are specific to PLINQ queries. The two most important operators to understand are AsParallel
and AsSequential. The AsParallel operator indicates that all subsequent LINQ operations
should be attempted to be performed in parallel. In contrast, the AsSequential operator indicates
to PLINQ that the LINQ operations that follow it should be performed in sequence.

Let’s look at an example that uses both of these PLINQ operators. Our query will be operating on
List<Person> with the following definition:

internal class Person

{

 public string FirstName { get; set; } = "";

 public string LastName { get; set; } = "";

 public int Age { get; set; }

}

Let’s consider that we are working with a dataset of thousands or even millions of people. We want
to leverage PLINQ to query only the adults aged 18 or older from the data and then group them by
their last name. We want to execute only the Where clause of the query in parallel. The GroupBy
operation will be performed sequentially. This method will do exactly that:

internal void QueryAndGroupPeople(List<Person> people)

{

 var results = people.AsParallel().Where(p => p.Age > 17)

 .AsSequential().GroupBy(p => p.LastName);

 foreach (var group in results)

 {

 Console.WriteLine($"Last name {group.Key} has

 {group.Count()} people.");

Introducing PLINQ 171

 }

 // Sample output:

 // Last name Jones has 4220 people.

 // Last name Xu has 3434 people.

 // Last name Patel has 4798 people.

 // Last name Smith has 3051 people.

 // Last name Sanchez has 3811 people.

 // ...

}

The GroupBy LINQ method will return IEnumerable<IGrouping<string, Person>>
with each IGrouping<string, Person> instance containing all of the people with the same
LastName. Whether or not this GroupBy operation would be faster to run in parallel or sequentially
depends on the makeup of the data. You should always test your application to determine whether
introducing parallelism is improving the performance when working with production data. We will
cover ways to performance-test your code in Chapter 10.

Next, let’s look at how PLINQ queries can be written with the method syntax that we have used thus
far or by using LINQ query syntax.

Query syntax versus method syntax

LINQ queries can be coded either by using method syntax or query syntax. Method syntax is where
you string multiple methods together to build a query. This is what we have been doing throughout
this section. Query syntax is slightly different, and it is akin to T-SQL query syntax. Let’s examine the
same PLINQ query written both ways.

Here is a simple PLINQ query to return only adults from a list of people written with method syntax:

var peopleQuery1 = people.AsParallel().Where(p => p.Age > 17);

Here is the exact same PLINQ query written with query syntax:

var peopleQuery2 = from person in people.AsParallel()

 where person.Age > 17

 select person;

You should use whichever syntax you prefer. Throughout the rest of this chapter, we will be using
method syntax for the examples.

Parallel Data Structures and Parallel LINQ172

In the next section, we will continue to explore the operations available in PLINQ and create some
parallel versions of LINQ queries.

Converting LINQ queries to PLINQ
In this section, we will look at some additional PLINQ operators and show you how you can leverage
them to turn existing LINQ queries into PLINQ queries. Your existing queries may have requirements
for preserving the order of data. Perhaps your existing code doesn’t use LINQ at all. There could be
an opportunity there to convert some logic in foreach loops into PLINQ operations.

The way to convert a LINQ query to a PLINQ query is by inserting an AsParallel() statement
into the query, as we did in the previous section. Everything that follows AsParallel() will run
in parallel until an AsSequential() statement is encountered.

If your queries require that the original order of objects be preserved, you can include an AsOrdered()
statement:

var results = people.AsParallel().AsOrdered()

 .Where(p => p.LastName.StartsWith("H"));

However, this will not be as performant as queries that do not preserve the sequence of data. To
explicitly tell PLINQ to not preserve data order, use the AsUnordered() statement:

var results = people.AsParallel().AsUnordered()

 .Where(p => p.LastName.StartsWith("H"));

The unordered version of the query will perform much better if the order of your data is not important;
you should never use AsOrdered() with PLINQ.

Let’s consider another example. We will start with a method that iterates over a list of people with a
foreach loop and calls a method named ProcessVoterActions for each person aged 18 or
older. We’re going to assume that this method is processor-intensive and also uses some I/O to save
the voter information in a database. Here is the starting code:

internal void ProcessAdultsWhoVote(List<Person> people)

{

 foreach (var person in people)

 {

 if (person.Age < 18) continue;

 ProcessVoterActions(person);

 }

}

Converting LINQ queries to PLINQ 173

private void ProcessVoterActions(Person adult)

{

 // Add adult to a voter database and process their

 data.

}

This will not leverage parallel processing at all. We could improve on this by using LINQ to filter out the
children under 18 and then call ProcessVoterActions with a Parallel.ForEach loop:

internal void ProcessAdultsWhoVoteInParallel(List<Person>

 people)

{

 var adults = people.Where(p => p.Age > 17);

 Parallel.ForEach(adults, ProcessVoterActions);

}

This will certainly improve the performance if ProcessVoterActions takes some time to run
for each person. However, with PLINQ, we can improve the performance even further:

internal void ProcessAdultsWhoVoteWithPlinq(List<Person>

 people)

{

 var adults = people.AsParallel().Where(p => p.Age > 17);

 adults.ForAll(ProcessVoterActions);

}

Now, the Where query will run in parallel. This will certainly help performance if we expect to have
thousands or millions of objects in the people collection. The ForAll extension method is another
PLINQ operation that runs in parallel. It is meant to be used to perform an operation in parallel on
each object in the query results.

The performance of ForAll will also be superior to the Parallel.ForEach operation in the previous
example. One difference is the deferred execution of PLINQ. These calls to ProcessVoterActions
will not be performed until the IEnumerable result is iterated over. The other advantage is the
same advantage over performing a standard foreach loop with IEnumerable after completing
a PLINQ query on your data. The data must be merged back from the multiple threads before it can
be enumerated by either foreach or Parallel.ForEach. With a ForAll operation, the data
can remain segmented by PLINQ and merged once at the end. This diagram illustrates the difference
between Parallel.ForEach and ForAll:

Parallel Data Structures and Parallel LINQ174

Figure 8.1 – Advantages of PLINQ, data segmentation, and ForAll

Before we explore more details about data order and merging data, let’s discuss how to handle exceptions
when working with PLINQ.

Handling exceptions with PLINQ queries

Implementing good exception handling in your .NET projects is important. It’s one of the fundamental
practices of software development. When working with parallel programming in general, exception
handling can be more complicated. This is also true with PLINQ. When any exception is unhandled
within a parallel operation inside a PLINQ query, the query will throw an exception of type
AggregateException. So, at the very minimum, all of your PLINQ queries should run within
a try/catch block that catches the AggregateException exception type.

Let’s take our PLINQ ForAll example with ProcessVoterActions and add some
exception handling:

1. We’re going to run this example in a .NET console application, so create a new project in Visual
Studio and add a class named Person:

internal class Person

{

 public string FirstName { get; set; } = "";

Converting LINQ queries to PLINQ 175

 public string LastName { get; set; } = "";

 public int Age { get; set; }

}

2. Next, add a new class named PlinqExceptionsExample.

3. Now add a private method to PlinqExceptionsExample named
ProcessVoterActions. We’re going to throw ArgumentException for any person
older than 120:

private void ProcessVoterActions(Person adult)

{

 if (adult.Age > 120)

 {

 throw new ArgumentException("This person is

 too old!", nameof(adult));

 }

 // Add adult to a voter database and process their

data.

}

4. Next, add the ProcessAdultsWhoVoteWithPlinq method:

internal void ProcessAdultsWhoVoteWithPlinq

 (List<Person> people)

{

 try

 {

 var adults = people.AsParallel().Where(p =>

 p.Age > 17);

 adults.ForAll(ProcessVoterActions);

 }

 catch (AggregateException ae)

 {

 foreach (var ex in ae.InnerExceptions)

 {

 Console.WriteLine($"Exception encountered

 while processing voters. Message:

 {ex.Message}");

Parallel Data Structures and Parallel LINQ176

 }

 }

}

This method’s logic remains the same. It’s filtering out the children with a PLINQ Where
clause and calling ProcessVoterActions as a delegate to ForAll.

Note
If you are following along with the sample code on GitHub for this chapter (https://github.
com/PacktPublishing/Parallel-Programming-and-Concurrency-with-
C-sharp-10-and-.NET-6/tree/main/chapter08/LINQandPLINQsnippets),
you will need to uncomment the lines of code in Step 5. You should also comment out the lines
in the Main method that follow those lines to prevent other samples from executing.

5. Finally, open Program.cs and add some code to create an instance of List<Person> in an
inline function called GetPeople. It can contain as many people as you like, but at least one of
them needs to have an age greater than 120. Call ProcessAdultsWhoVoteWithPlinq,
passing the data from GetPeople:

using LINQandPLINQsnippets;

var exceptionExample = new PlinqExceptionsExample();

exceptionExample.ProcessAdultsWhoVoteWithPlinq

 (GetPeople());

Console.ReadLine();

static List<Person> GetPeople()

{

 return new List<Person>

 {

 new Person { FirstName = "Bob", LastName =

 "Jones", Age = 23 },

 new Person { FirstName = "Sally", LastName =

 "Shen", Age = 2 },

 new Person { FirstName = "Joe", LastName =

 "Smith", Age = 45 },

 new Person { FirstName = "Lisa", LastName =

 "Samson", Age = 98 },

 new Person { FirstName = "Norman", LastName =

 "Patterson", Age = 121 },

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter08/LINQandPLINQsnippets
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter08/LINQandPLINQsnippets
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter08/LINQandPLINQsnippets

Converting LINQ queries to PLINQ 177

 new Person { FirstName = "Steve", LastName =

 "Gates", Age = 40 },

 new Person { FirstName = "Richard", LastName =

 "Ng", Age = 18 }

 };

}

6. Now, run the program and observe the console output. If Visual Studio breaks at the exception,
just click Continue:

Figure 8.2 – Receiving an exception in the console

The problem with handling the exception from outside the PLINQ query is that the entire query
is stopped. It isn’t able to run to completion. If you have an exception that shouldn’t stop the entire
process, you should handle it from within the code inside the query and continue processing the
remaining items.

If you handle exceptions inside ProcessVoterActions, you have a chance to process them
gracefully and continue.

Next, we are going to explore some examples of how to preserve the order of your data and handle
different options for merging segments back together.

Parallel Data Structures and Parallel LINQ178

Preserving data order and merging data with PLINQ
When fine-tuning PLINQ queries for your applications, there are some extension methods that impact
the sequencing of data that you can leverage. Preserving the original order of your items may be
something that is required. We have touched on the AsOrdered method in this chapter, and we will
experiment with it in this section. When PLINQ operations have been completed and items are returned
as part of the final enumeration, the data is merged from the segments that were created to operate on
multiple threads. The merge behavior can be controlled by setting ParallelMergeOptions with
the WithMergeOptions extension method. We will discuss the behavior of the three available
merge options provided.

Let’s get started by creating some samples with the AsOrdered and AsUnordered
extension methods.

PLINQ data order samples

In this section, we will create five methods that each accept the same set of data and perform the same
filtering on the input data. However, the ordering in each PLINQ query will be handled differently. We
are going to be working with the same Person class from the previous section. So, you can either
work with the same project or create a new .NET console application project and add the People
class from the previous example. Let’s get started:

1. First, open the Person class and add a new bool property named IsImportant. We are
going to use this to add a second data point for filtering in the PLINQ queries:

internal class Person

{

 public string FirstName { get; set; } = "";

 public string LastName { get; set; } = "";

 public int Age { get; set; }

 public bool IsImportant { get; set; }

}

2. Next, add a new class to the project named OrderSamples.

3. Now it’s time to start adding the queries. In this first query, we are not specifying AsOrdered
or AsUnordered. By default, PLINQ should not be attempting to preserve the original order
of the data. In each of these queries, we are returning each Person object with Age less than
18 and with IsImportant set to true:

internal IEnumerable<Person>

 GetImportantChildrenNoOrder(List<Person> people)

{

Preserving data order and merging data with PLINQ 179

 return people.AsParallel()

 .Where(p => p.IsImportant && p.Age < 18);

}

4. In the second example, we are explicitly adding IsUnordered to the query after AsParallel.
The behavior should be the same as the first query, with PLINQ not concerning itself with the
original order of the items:

internal IEnumerable<Person>

 GetImportantChildrenUnordered(List<Person> people)

{

 return people.AsParallel().AsUnordered()

 .Where(p => p.IsImportant && p.Age < 18);

}

5. The third example breaks up the filters into two separate Where clauses; IsSequential
is added after the first Where clause. How do you think this will impact the item sequence?
We will find out when we run the program:

internal IEnumerable<Person>

 GetImportantChildrenUnknownOrder(List<Person>

 people)

{

 return people.AsParallel().Where(p =>

 p.IsImportant)

 .AsSequential().Where(p => p.Age < 18);

}

6. In the fourth example, we are using AsParallel().AsOrdered() to signal to PLINQ
that we want the original order of items to be preserved:

internal IEnumerable<Person>

 GetImportantChildrenPreserveOrder(List<Person>

 people)

{

 return people.AsParallel().AsOrdered()

 .Where(p => p.IsImportant && p.Age < 18);

}

Parallel Data Structures and Parallel LINQ180

7. In the fifth and final example, we are adding a Reverse method after AsOrdered. This
should preserve the original order of items in reverse:

internal IEnumerable<Person>

 GetImportantChildrenReverseOrder(List<Person>

 people)

{

 return people.AsParallel().AsOrdered().Reverse()

 .Where(p => p.IsImportant && p.Age < 18);

}

8. Next, open Program.cs and add two local functions. One will create a list of Person
objects to pass to each method. The other will iterate over List<Person> to output each
FirstName to the console:

static List<Person> GetYoungPeople()

{

 return new List<Person>

 {

 new Person { FirstName = "Bob", LastName =

 "Jones", Age = 23 },

 new Person { FirstName = "Sally", LastName =

 "Shen", Age = 2, IsImportant = true },

 new Person { FirstName = "Joe", LastName =

 "Smith", Age = 5, IsImportant = true },

 new Person { FirstName = "Lisa", LastName =

 "Samson", Age = 9, IsImportant = true },

 new Person { FirstName = "Norman", LastName =

 "Patterson", Age = 17 },

 new Person { FirstName = "Steve", LastName =

 "Gates", Age = 20 },

 new Person { FirstName = "Richard", LastName =

 "Ng", Age = 16, IsImportant = true }

 };

}

static void OutputListToConsole(List<Person> list)

{

 foreach (var item in list)

Preserving data order and merging data with PLINQ 181

 {

 Console.WriteLine(item.FirstName);

 }

}

9. Finally, we will add the code to call each method. The timestamp, including milliseconds, is
being output to the console before each method call and again at the end. You can run the
application multiple times to inspect the performance of each method call. Try running it on
PCs with more or fewer cores and different-sized datasets to see how that impacts the output:

using LINQandPLINQsnippets;

var timeFmt = "hh:mm:ss.fff tt";

var orderExample = new OrderSamples();

Console.WriteLine($"Start time: {DateTime.Now.ToString

 (timeFmt)}. AsParallel children:");

OutputListToConsole(orderExample.GetImportantChildrenN

 oOrder(GetYoungPeople()).ToList());

Console.WriteLine($"Start time: {DateTime.Now

 .ToString(timeFmt)}. AsUnordered children:");

OutputListToConsole(orderExample.GetImportantChildrenU

 nordered(GetYoungPeople()).ToList());

Console.WriteLine($"Start time: {DateTime.Now

 .ToString(timeFmt)}. Sequential after Where

 children:");

OutputListToConsole(orderExample.GetImportantChildren

 UnknownOrder(GetYoungPeople()).ToList());

Console.WriteLine($"Start time: {DateTime.Now

 .ToString(timeFmt)}. AsOrdered children:");

OutputListToConsole(orderExample.GetImportantChildrenP

 reserveOrder(GetYoungPeople()).ToList());

Console.WriteLine($"Start time: {DateTime.Now

 .ToString(timeFmt)}. Reverse order children:");

OutputListToConsole(orderExample.GetImportantChildrenR

 everseOrder(GetYoungPeople()).ToList());

Console.WriteLine($"Finish time: {DateTime.Now

 .ToString(timeFmt)}");

Console.ReadLine();

Parallel Data Structures and Parallel LINQ182

10. Now, run the program and examine the output:

Figure 8.3 – Comparing the order of items from five PLINQ queries

You can see from the output that the order of items is only predictable in the last two examples where
we have specified AsOrdered() and AsOrdered().Reverse(). The impact of the different
PLINQ operations is difficult to measure on such a small dataset. If you run this several times, you
are likely to see different results in the timing. Try adding larger datasets on your own to experiment
with the performance.

Next, let’s discuss merging segments and test the different options in a sample.

Using WithMergeOptions in PLINQ queries

When we discuss merging data in PLINQ, it is the merge that happens as each segment of an operation
completes its actions, and the results are merged back into the result on the calling thread. Most of
the time, you will not need to specify any merge options. For times when you may need to do so, it’s

Preserving data order and merging data with PLINQ 183

important to understand the behavior of each of the options. Let’s review each of the members of the
ParallelMergeOptions enumeration.

ParallelMergeOptions.NotBuffered

Think of the NotBuffered option as streaming data. Each item is returned from the query immediately
after it has finished processing. There are some PLINQ operations that cannot support this option and
will ignore it. For instance, the OrderBy and OrderByDescending operations cannot return
items until the sorting has completed on the merged data. These are always FullyBuffered.
However, queries that use AsOrdered can use this option. Use this option if your application needs
to consume items in a streaming manner.

ParallelMergeOptions.AutoBuffered

The AutoBuffered option returns sets of items as they are collected. The size of the item set and
how frequently it is returned to clear the buffer are not configurable or known to your code. If you
want to make your data available in this manner, this option may suit your needs. Once again, the
OrderBy and OrderByDescending operations will not accept this option. This is the default
for most PLINQ operations and is the fastest overall in most scenarios. The AutoBuffered option
allows PLINQ the most flexibility to buffer items as necessary based on current system conditions.

ParallelMergeOptions.FullyBuffered

The FullyBuffered option will not make any results available until they have all been processed
and buffered by the query. The option will take the longest to make the first item available, but many
times, it is the fastest to provide the entire dataset.

ParallelMergeOptions.Default

There is also the ParallelMergeOptions.Default value, which will act the same as not
calling WithMergeOptions at all. You should choose your merge option based on how the data
needs to be consumed. If you have no strict requirements, it is usually best to not set merge options.

WithMergeOptions in action

Let’s create examples of using the same Person query with each merge option and with no merge
options set at all:

1. Start by adding a MergeSamples class to the console application project you previously
created. First, add the following three methods to test the types of merges:

internal IEnumerable<Person>

 GetImportantChildrenNoMergeSpecified(List<Person>

 people)

{

Parallel Data Structures and Parallel LINQ184

 return people.AsParallel()

 .Where(p => p.IsImportant && p.Age < 18)

 .Take(3);

}

internal IEnumerable<Person> GetImportantChildren

 DefaultMerge(List<Person> people)

{

 return people.AsParallel().WithMergeOptions

 (ParallelMergeOptions.Default)

 .Where(p => p.IsImportant && p.Age <

 18).Take(3);

}

internal IEnumerable<Person> GetImportant

 ChildrenAutoBuffered(List<Person> people)

{

 return people.AsParallel().WithMergeOptions

 (ParallelMergeOptions.AutoBuffered).Where(p =>

 p.IsImportant && p.Age < 18).Take(3);

}

2. Next, add the following two methods to the MergeSamples class:

internal IEnumerable<Person> GetImportant

 ChildrenNotBuffered(List<Person> people)

{

 return people.AsParallel().WithMergeOptions

 (ParallelMergeOptions.NotBuffered)

 .Where(p => p.IsImportant && p.Age <

 18).Take(3);

}

internal IEnumerable<Person> GetImportantChildren

 FullyBuffered(List<Person> people)

{

 return people.AsParallel().WithMergeOptions

 (ParallelMergeOptions.FullyBuffered).Where(p =>

 p.IsImportant && p.Age < 18).Take(3);

}

Preserving data order and merging data with PLINQ 185

Each of the methods in the last two steps performs a PLINQ query that filters for
IsImportant equal to true and Age less than 18. It then performs a Take(3)
operation to return only the first three items from the query.

3. Add code to Program.cs to call each method and output the timestamp before each call, as
well as a final timestamp at the end. This is the same process we used when calling the methods
to test ordering in the previous section:

using LINQandPLINQsnippets;

var timeFmt = "hh:mm:ss.fff tt";

var mergeExample = new MergeSamples();

Console.WriteLine($"Start time: {DateTime.Now.ToString

 (timeFmt)}. NoMerge children:");

OutputListToConsole(mergeExample.GetImportantChildrenN

 oMergeSpecified(GetYoungPeople()).ToList());

Console.WriteLine($"Start time:

 {DateTime.Now.ToString(timeFmt)}. DefaultMerge

 children:");

OutputListToConsole(mergeExample.GetImportantChildren

 DefaultMerge(GetYoungPeople()).ToList());

Console.WriteLine($"Start time: {DateTime.Now.ToString

 (timeFmt)}. AutoBuffered children:");

OutputListToConsole(mergeExample.GetImportantChildren

 AutoBuffered(GetYoungPeople()).ToList());

Console.WriteLine($"Start time:

 {DateTime.Now.ToString(timeFmt)}. NotBuffered

 children:");

OutputListToConsole(mergeExample.GetImportantChildren

 NotBuffered(GetYoungPeople()).ToList());

Console.WriteLine($"Start time:

 {DateTime.Now.ToString(timeFmt)}. FullyBuffered

 children:");

OutputListToConsole(mergeExample.GetImportantChildren

 FullyBuffered(GetYoungPeople()).ToList());

Console.WriteLine($"Finish time: {

 DateTime.Now.ToString(timeFmt)}");

Console.ReadLine();

Parallel Data Structures and Parallel LINQ186

4. Now, run the program and examine the output:

Figure 8.4 – Reviewing the output of the PLINQ merge options methods

The first option with no merge option specified takes the longest to run, but often, the first time you
run a PLINQ query, it will be slower than subsequent executions. The remaining queries are all very
fast. You should test these queries on some large sets of data from your own databases and see how the
timings differ for different PLINQ operators and different merge options. You can even take timings
between the output of each item to see how quickly the first item is returned for NotBuffered
versus FullyBuffered.

Before we review everything that we have learned in this chapter, let’s discuss a few .NET objects and
data structures that complement parallel programming and PLINQ queries.

Data structures for parallel programming in .NET
When working with parallel programming in .NET, and with PLINQ, you should take advantage of the
data structures, types, and primitives that .NET provides. In this section, we will touch on concurrent
collections and synchronization primitives.

Data structures for parallel programming in .NET 187

Concurrent collections

Concurrent collections are useful when working with parallel programming. We will cover them
in great detail in Chapter 9, but let’s quickly discuss how we can leverage them when working with
PLINQ queries.

If you are simply selecting and sorting data with PLINQ, it is not necessary to incur the overhead that is
added with the collections in the System.Collections.Concurrent namespace. However,
if you are calling a method with ForAll that modifies items in your source data, you should use one
of these current collections, such as BlockingCollection<T>, ConcurrentBag<T>, or
ConcurrentDictionary<TKey, TValue>. They can also guard against any simultaneous
Add or Remove operations on the collections.

Synchronization primitives

If you are unable to introduce concurrent collections into your existing code base, another option
to provide concurrency and performance is synchronization primitives. We covered many of these
types in Chapter 1. These types in the System.Threading namespace, including Barrier,
CountdownEvent, SemaphoreSlim, SpinLock, and SpinWait, provide the right balance
of thread safety and performance. Other locking mechanisms, such as lock and Mutex, can be
more expensive to implement, causing a greater performance impact.

If we want to guard one of our PLINQ queries that uses ForAll with SpinLock, we can simply
wrap the method in a try/finally block and use the Enter and Exit calls on SpinLock.
Take this example where we were checking where a person had an age greater than 120. Let’s imagine
that the code also modifies the age:

private SpinLock _spinLock = new SpinLock();

internal void ProcessAdultsWhoVoteWithPlinq2(List<Person>

 people)

{

 var adults = people.AsParallel().Where(p => p.Age > 17);

 adults.ForAll(ProcessVoterActions2);

}

private void ProcessVoterActions2(Person adult)

{

 var hasLock = false;

 if (adult.Age > 120)

 {

 try

Parallel Data Structures and Parallel LINQ188

 {

 _spinLock.Enter(hasLock);

 adult.Age = 120;

 }

 finally

 {

 if (hasLock) _spinLock.Exit();

 }

 }

}

To read more about synchronization primitives, check out this section in Microsoft Docs: https://
docs.microsoft.com/dotnet/standard/threading/overview-of-
synchronization-primitives.

Now, let’s wrap up by reviewing what we have learned in this chapter on parallel programming and
PLINQ.

Summary
In this chapter, we learned about the power of PLINQ to introduce parallel processing to our LINQ
queries. We started by looking at how PLINQ differs from standard LINQ queries. Next, we explored
how to introduce PLINQ into existing code by converting some standard LINQ queries. It is important
to understand how PLINQ is impacting the performance of your applications, and we examined
some timings in our sample applications. (Later, in Chapter 10, we will discuss some tools to test
your application performance while testing it locally.) We covered some optimizations you can make
to your queries with merge options and data ordering. Finally, we wrapped up by touching on some
other .NET data structures and types to help provide type safety and performance to your applications.

In the next chapter, we will explore each of the concurrent collections in the System.Collections.
Concurrent namespace in depth. The concurrent collections are key to ensuring that your parallel
and concurrent code maintains type safety when operating on shared data.

https://docs.microsoft.com/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/dotnet/standard/threading/overview-of-synchronization-primitives

Questions 189

Questions
1. Which PLINQ method signals that the query should start processing in parallel?

2. Which PLINQ method signals that the query should not process in parallel any longer?

3. Which method tells PLINQ to preserve the original order of the source data?

4. Which PLINQ method will execute a delegate in parallel on each item in the query?

5. What performance impact does AsOrdered() have on a PLINQ query?

6. Which PLINQ operations cannot be used with ParallelMergeOptions.NotBuffered?

7. Is PLINQ always faster than an equivalent LINQ query?

8. Which PLINQ merge option would you select if you want results to stream back from the
query as they become available?

9
Wo r k i n g w i t h C o n c u r r e n t

C o l l e c t i o n s i n . N E T

This chapter will dive deeper into some of the concurrent collections in the System.Collections.
Concurrent namespace. These specialized collections help to preserve data integrity when using
concurrency and parallelism in your C# code. Each section of this chapter will provide practical
examples of how to use a specific concurrent collection provided by .NET.

We have seen some basic use of parallel data structures in .NET. We have already covered the basics
of each of the concurrent collections in the Introduction to concurrency section of Chapter 2. So, we
will quickly jump into the examples of their use in this chapter and learn more about their application
and inner workings.

In this chapter, we will do the following:

• Using BlockingCollection

• Using ConcurrentBag

• Using ConcurrentDictionary

• Using ConcurrentQueue

• Using ConcurrentStack

By the end of this chapter, you will have a deeper understanding of how these collections protect your
shared data from being mishandled while multithreading.

Working with Concurrent Collections in .NET192

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for
Windows developers:

• Visual Studio 2022 version 17.0 or later.

• .NET 6.

• To complete any WinForms or WPF samples, you will need to install the .NET desktop
development workload for Visual Studio. These projects will run only on Windows.

While these are recommended, if you have .NET 6 installed, you can use your preferred editor. For
example, Visual Studio 2022 for Mac on macOS 10.13 or later, JetBrains Rider, or Visual Studio Code
will work just as well.

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter09.

Let’s get started by learning more about BlockingCollection<T> and walk through a sample
project that leverages the collection.

Using BlockingCollection
BlockingCollection<T> is one of the most useful concurrent collections. As we saw in
Chapter 7, BlockingCollection<T> was created to be an implementation of the producer/
consumer pattern for .NET. Let’s review some of the specifics of this collection before creating a
different kind of sample project.

BlockingCollection details

One of the major draws of BlockingCollection<T> for developers working with parallel code
implementations is that it can be swapped to replace List<T> without too many additional modifications.
You can use the Add() method for both. The difference with BlockingCollection<T> is
that calling Add() to add an item will block the current thread if another read or write operation is
in process. If you want to specify a timeout period on the operation, you can use TryAdd(). The
TryAdd() method optionally supports both timeouts and cancellation tokens.

Removing items from BlockingCollection<T> with Take() has an equivalent TryTake(),
which allows timed operations and cancellation. The Take() and TryTake() methods will take and
remove the first remaining item that was added to the collection. This is because the default underlying
collection type within BlockingCollection<T> is ConcurrentQueue<T>. Alternatively,
you can specify that the collection uses ConcurrentStack<T>, ConcurrentBag<T>, or
any collection that implements the IProducerConsumerCollection<T> interface. Here’s

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09

Using BlockingCollection 193

an example of BlockingCollection<T> being initialized to use ConcurrentStack<T>,
with its capacity limited to 100 items:

var itemCollection = new BlockingCollection<string>(new

 ConcurrentStack<string>(), 100);

If your application needs to iterate over the items in BlockingCollection<T>, the
GetConsumingEnumerable() method can be used in a for or foreach loop. However,
keep in mind that this iteration over the collection is also removing items, and it will complete the
collection if the enumeration continues until the collection is empty. This is the consuming part of the
GetConsumingEnumerable() method name.

If you need to use multiple BlockingCollection<T> classes of the same type, you can add to
or take from them as one by adding them to an array. An array of BlockingCollection<T>
makes the TryAddToAny() and TryTakeFromAny() methods available. These methods will
succeed if any of the collections in the array are in the proper state to accept or provide objects to the
calling code. Microsoft Docs has an example of how to use an array of BlockingCollection<T>
in a pipeline: https://docs.microsoft.com/dotnet/standard/collections/
thread-safe/how-to-use-arrays-of-blockingcollections.

Now that we have covered the details needed to understand BlockingCollection<T>, let’s
dive into a sample project.

Using BlockingCollection with Parallel.ForEach and PLINQ

We already covered an example that implements the producer/consumer pattern in Chapter 7, so let’s
try something a little different in this section. We are going to create a WPF application that loads the
contents of a book from a 1.5 MB text file and searches for words that start with a particular letter:

Note
This sample uses a .NET Standard NuGet package created from a Microsoft extension
sample that was originally built on .NET Framework 4.0. The extension is called
ParallelExtensionsExtras, and the original source is available on GitHub:
https://github.com/dotnet/samples/tree/main/csharp/parallel/
ParallelExtensionsExtras. The extension method that we will be using from the
package makes Parallel.ForEach operations and PLINQ queries run more efficiently with
concurrent collections. To read more about the extensions, you can check out this post on the
.NET Parallel Programming blog: https://devblogs.microsoft.com/pfxteam/
parallelextensionsextras-tour-4-blockingcollectionextensions/.

1. Start by creating a new WPF application in Visual Studio. Name the project ParallelExtras.
BlockingCollection.

Working with Concurrent Collections in .NET194

2. On the NuGet Package Manager page, search for and add the latest stable version of the
ParallelExtensionsExtras.NetFxStandard package to your project:

Figure 9.1 – The ParallelExtensionsExtras.NetFxStandard NuGet package

3. We are going to read text from the book Ulysses by James Joyce. This book is public domain in
the United States and most countries around the world. It can be downloaded in UTF-8 plain
text format from Project Gutenberg: https://www.gutenberg.org/ebooks/4300.
Download a copy, name the file ulysses.txt, and place it in the main folder with your
other project files.

4. In Visual Studio, right-click ulysses.txt and select Properties. In the Properties window,
update the Copy to Output Directory property to Copy if newer.

5. Open MainWindow.xaml and add Grid.RowDefinitions and Grid.
Columndefinitions to the Grid control, as follows:

<Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

 <ColumnDefinition/>

 <ColumnDefinition/>

</Grid.ColumnDefinitions>

6. Add ComboBox and Button inside the Grid definition following the Grid.
ColumnDefinitions element. These controls will be in the first row of Grid:

<ComboBox x:Name="LettersComboBox"

 Grid.Row="0" Grid.Column="0"

 Margin="4">

 <ComboBoxItem Content="A"/>

 <ComboBoxItem Content="D"/>

 <ComboBoxItem Content="F"/>

 <ComboBoxItem Content="G"/>

 <ComboBoxItem Content="M"/>

 <ComboBoxItem Content="O"/>

Using BlockingCollection 195

 <ComboBoxItem Content="A"/>

 <ComboBoxItem Content="T"/>

 <ComboBoxItem Content="W"/>

</ComboBox>

<Button Grid.Row="0" Grid.Column="1"

 Margin="4" Content="Load Words"

 Click="Button_Click"/>

ComboBox will contain nine different letters from which to choose. You can add as
many of these as you like. Button contains a Click event handler that we will add to
MainWindow.xaml.cs soon.

7. Finally, add ListView named WordsListView to the second row of Grid. It will span
both of the columns:

<ListView x:Name="WordsListView" Margin="4"

 Grid.Row="1" Grid.ColumnSpan="2"/>

8. Now, open MainWIndow.xaml.cs. The first thing we will do here is to create a method
named LoadBookLinesFromFile(), which reads each line of text from ulysses.
txt into BlockingCollection<string>. There is only a single thread reading from
the file, so using the Add() method instead of TryAdd() is best:

private async Task<BlockingCollection<string>>

 LoadBookLinesFromFile()

{

 var lines = new BlockingCollection<string>();

 using var reader = File.OpenText(Path.Combine(

 Path.GetDirectoryName(Assembly

 .GetExecutingAssembly().Location),

 "ulysses.txt"));

 string line;

 while ((line = await reader.ReadLineAsync()) !=

 null)

 {

 lines.Add(line);

 }

 lines.CompleteAdding();

 return lines;

}

Working with Concurrent Collections in .NET196

Note
Remember, it is important to call lines.CompleteAdding() before the end of the
method. Otherwise, subsequent queries of this collection will hang and continue waiting for
more items to be added to the stream.

9. Now, create a method named GetWords() that takes the lines from the text file and uses
a regular expression to parse each line into individual words. These words will all be added
to a new BlockingCollection<string>. In this method, we’re parsing multiple
lines simultaneously with a Parallel.ForEach loop. The ParallelExtentionsExtras.
NetFxStandard package provides the GetConsumingPartitioner() extension method,
which tells the Parallel.ForEach loop that BlockingCollection will be doing its
own blocking, so the loop does not need to do any. This makes the whole process more efficient:

private BlockingCollection<string>

 GetWords(BlockingCollection<string> lines)

{

 var words = new BlockingCollection<string>();

 Parallel.ForEach(lines.GetConsumingPartitioner(),

 (line) =>

 {

 var matches = Regex.Matches(line,

 @"\b[\w']*\b");

 foreach (var m in matches.Cast<Match>())

 {

 if (!string.IsNullOrEmpty(m.Value))

 {

 words.TryAdd(TrimSuffix(m.Value,

 '\''));

 }

 }

 });

 words.CompleteAdding();

 return words;

}

private string TrimSuffix(string word, char

 charToTrim)

{

 int charLocation = word.IndexOf(charToTrim);

Using BlockingCollection 197

 if (charLocation != -1)

 {

 word = word[..charLocation];

 }

 return word;

}

The TrimSuffix() method will remove specific characters from the end of a word; in
this case, we’re passing the apostrophe character to be removed.

Note
If you are unfamiliar with regular expressions, you can read about how to use them with .NET
on Microsoft Docs: https://docs.microsoft.com/dotnet/standard/base-
types/regular-expressions. They are an extremely efficient way to parse text.

10. Next, create a method named GetWordsByLetter() to call the other methods we just
created. Once BlockingCollection<string> containing all the words from the book
has been fetched, this method will use PLINQ and GetConsumingPartitioner() to
find all words that start with the uppercase or lowercase versions of the selected letter:

private async Task<List<string>> GetWordsByLetter(char

 letter)

{

 BlockingCollection<string> lines = await

 LoadBookLinesFromFile();

 BlockingCollection<string> words =

 GetWords(lines);

 // 275,506 words in total

 return words.GetConsumingPartitioner()

 .AsParallel()

 .Where(w => w.StartsWith(letter) ||

 w.StartsWith(char.ToLower(letter)))

 .ToList();

}

11. Finally, we’ll add the Button_Click event to kick off the loading, parsing, and querying
of the book’s text. Don’t forget to mark the event handler as async:

private async void Button_Click(object sender,

 RoutedEventArgs e)

https://docs.microsoft.com/dotnet/standard/base-types/regular-expressions
https://docs.microsoft.com/dotnet/standard/base-types/regular-expressions

Working with Concurrent Collections in .NET198

{

 if (LettersComboBox.SelectedIndex < 0)

 {

 MessageBox.Show("Please select a letter.");

 return;

 }

 WordsListView.ItemsSource = await

 GetWordsByLetter(

 char.Parse(GetComboBoxValue(LettersComboBox

 .SelectedValue)));

}

private string GetComboBoxValue(object item)

{

 var comboxItem = item as ComboBoxItem;

 return comboxItem.Content.ToString();

}

The GetComboBoxValue() helper method will take the object from
LettersComboBox.SelectedValue and find string with the selected letter
within.

12. The following using declarations are required in MainWindow.xaml.cs to compile
and run the project:

using System.Collections.Concurrent;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Reflection;

using System.Text.RegularExpressions;

using System.Threading.Tasks;

using System.Windows;

using System.Windows.Controls;

13. Now, run the project, select a letter, and click Load Words:

Using ConcurrentBag 199

Figure 9.2 – Displaying words that begin with T from ulysses.txt

The whole process runs very quickly considering the book contains over 275,000 total words. Try
adding some sorting to the PLINQ query and see how the performance is impacted.

Let’s continue by learning about ConcurrentBag<T>.

Using ConcurrentBag
The ConcurrentBag<T> is an unordered collection of objects that can be safely added, peeked
at, or removed concurrently. Keep in mind that, as with all of the concurrent collections, the methods
exposed by ConcurrentBag<T> are thread-safe, but any extension methods are not guaranteed
to be safe. Always implement your own synchronization when leveraging them. To review a list of
safe methods, you can review this Microsoft Docs page: https://docs.microsoft.com/
dotnet/api/system.collections.concurrent.concurrentbag-1#methods.

Working with Concurrent Collections in .NET200

We are going to create a sample application that simulates working with a pool of objects. This scenario
can be useful if you have some processing that leverages a stateful object that is memory-intensive.
You want to minimize the number of objects created but cannot reuse one until the previous iteration
has finished using it and returned it to the pool.

In our example, we will use a mocked-up PDF processing class that is assumed to be memory-intensive.
In reality, document-processing libraries can be quite heavy, and they often rely on document states
in each instance. The console application will iterate in parallel 15 times to create these fake PDF
objects and append some text to each of them. Each time through the loop, we will output the text
contents and the current count of PDF processors in the pool. If the current count remains low, then
the application is working as intended:

1. Start by creating a new .NET console application in Visual Studio named ConcurrentBag.
PdfProcessor.

2. Add a new class to represent the mocked-up PDF data. Name the class ImposterPdfData:

public class ImposterPdfData

{

 private string _plainText;

 private byte[] _data;

 public ImposterPdfData(string plainText)

 {

 _plainText = plainText;

 _data = System.Text.Encoding.ASCII.GetBytes

 (plainText);

 }

 public string PlainText => _plainText;

 public byte[] PdfData => _data;

}

We are storing the plain text and an ASCII-encoded version of the text that we will pretend
is PDF format. This avoids implementing any third-party libraries in our sample application.
If you have any PDF libraries with which you are familiar, you are welcome to adapt this
sample to use them.

3. Next, add a new class named PdfParser. This class will be the one that is taken from and
returned to ConcurrentBag<PdfParser>. We will create the host for that collection
in an upcoming step:

public class PdfParser

{

 private ImposterPdfData? _pdf;

Using ConcurrentBag 201

 public void SetPdf(ImposterPdfData pdf) =>

 _pdf = pdf;

 public ImposterPdfData? GetPdf() => _pdf;

 public string GetPdfAsString()

 {

 if (_pdf != null)

 return _pdf.PlainText;

 else

 return "";

 }

 public byte[] GetPdfBytes()

 {

 if (_pdf != null)

 return _pdf.PdfData;

 else

 return new byte[0];

 }

}

This stateful class holds an instance of an ImposterPdfData object and can return the
data as a string or the ASCII-encoded byte array.

4. Add a method to PdfParser named AppendString. This method will add some additional
text to ImposterPdfData on a new line:

public void AppendString(string data)

{

 string newData;

 if (_pdf == null)

 {

 newData = data;

 }

 else

 {

 newData = _pdf.PlainText + Environment.NewLine

 + data;

 }

Working with Concurrent Collections in .NET202

 _pdf = new ImposterPdfData(newData);

}

5. Now, add a class named PdfWorkerPool:

public class PdfWorkerPool

{

 private ConcurrentBag<PdfParser> _workerPool =

 new();

 public PdfWorkerPool()

 {

 // Add initial worker

 _workerPool.Add(new PdfParser());

 }

 public PdfParser Get() => _workerPool.TryTake(out

 var parser) ? parser : new PdfParser();

 public void Return(PdfParser parser) =>

 _workerPool.Add(parser);

 public int WorkerCount => _workerPool.Count();

}

Be sure to also add a using System.Collections.Concurrent; statement
to PdfWorkerPool.cs. The pool stores ConcurrentBag<PdfParser>
named _workerPool. When PdfWorkerPool is initialized, it adds a new instance
to _workerPool. The Get method will return an existing instance from the pool with
TryTake if one exists. If the pool is empty, a new instance is created and returned to the
caller. The Return method adds PdfParser back to the pool when the consumer is
finished. We will use the WorkerCount property to track the number of objects in the
pool at any time.

Using ConcurrentBag 203

6. Finally, replace the contents of Program.cs with the following code:

using ConcurrentBag.PdfProcessor;

Console.WriteLine("Hello, ConcurrentBag!");

var pool = new PdfWorkerPool();

Parallel.For(0, 15, async (i) =>

{

 var parser = pool.Get();

 var data = new ImposterPdfData($"Data index: {i}");

 try

 {

 parser.SetPdf(data);

 parser.AppendString(DateTime.UtcNow

 .ToShortDateString());

 Console.WriteLine($"

 {parser.GetPdfAsString()}");

 Console.WriteLine($"Parser count:

 {pool.WorkerCount}");

 await Task.Delay(100);

 }

 finally

 {

 pool.Return(parser);

 await Task.Delay(250);

 }

});

Console.WriteLine("Press the Enter key to exit.");

Console.ReadLine();

After creating a new PdfWorkerPool, we’re using a Parallel.For loop to iterate 15
times. Each time through the loop, we get PdfParser, set the text, append DateTime.
UtcNow, and write the contents to the console, along with the current count of parsers in
the pool.

7. Run the application and examine the output:

Working with Concurrent Collections in .NET204

Figure 9.3 – Running the PdfProcessor console application

In my case, the parser count got to a maximum number of seven. If you tweak the Task.Delay
intervals or remove them entirely, you are likely to see the count never exceed one. This kind of pool
can be configured to be very efficient.

This application is an example where we do not care which instance of the collection is returned, so
ConcurrentBag<T> is a perfect choice. In the next section, we will create a drug lookup example
using ConcurrentDictionary<TKey, TValue>.

Using ConcurrentDictionary
In this section, we will create a WinForms application to load United States Food and Drug Administration
(FDA) drug data concurrently from two files. Once loaded to ConcurrentDictionary, we can
perform fast lookups with a National Drug Code (NDC) value to fetch the name. The FDA drug
data is freely available to download in several formats from the NDC directory: https://www.
fda.gov/drugs/drug-approvals-and-databases/national-drug-code-

Using ConcurrentDictionary 205

directory. We will be working with tab-delimited text files. I have downloaded the product.
txt file and moved about half of the records to a product2.txt file, duplicating the header row
in the second file. You can get these files in the GitHub repository for the chapter at https://
github.com/PacktPublishing/Parallel-Programming-and-Concurrency-
with-C-sharp-10-and-.NET-6/tree/main/chapter09/FdaNdcDrugLookup:

1. Start by creating a new WinForms project in Visual Studio targeting .NET 6. Name the project
FdaNdcDrugLookup.

2. Open the WinForm designer for Form1.cs. Lay out two TextBox controls, two Button
controls, and Label:

Figure 9.4 – The layout of Form1.cs

The Load Data button will have the following properties set: Name – btnLoad and
Text – Load Data. The NDC Code text field will be named txtNdc. The Lookup Drug
button will have these properties set: Name – btnLookup, Text – Lookup Drug, and
Enabled – False. Finally, the Drug Name text field will have these properties set: Name –
txtDrugName and ReadOnly – True.

3. Next, add the product.txt and product2.txt files to your project by right-clicking
the project in Solution Explorer and choosing Add | Existing Item.

4. In the Properties panel, change Copy to Output Directory to Copy if newer for both of the
text files we just added.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/FdaNdcDrugLookup
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/FdaNdcDrugLookup
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/FdaNdcDrugLookup

Working with Concurrent Collections in .NET206

5. Add a new class to the project named Drug and add the following implementation:

public class Drug

{

 public string? Id { get; set; }

 public string? Ndc { get; set; }

 public string? TypeName { get; set; }

 public string? ProprietaryName { get; set; }

 public string? NonProprietaryName { get; set; }

 public string? DosageForm { get; set; }

 public string? Route { get; set; }

 public string? SubstanceName { get; set; }

}

This will contain the data for each record loaded from the NDC drug files.

6. Next, add a class to the project named DrugService and begin with the following
implementation. To start, we only have private ConcurrentDictionary<string,
Drug>. We will add a method to load the data in the next step:

using System.Collections.Concurrent;

using System.Data;

using System.Reflection;

namespace FdaNdcDrugLookup

{

 public class DrugService

 {

 private ConcurrentDictionary<string, Drug>

 _drugData = new();

 }

}

7. Next, add a public method to DrugService named LoadData:

public void LoadData(string fileName)

{

 using DataTable dt = new();

 using StreamReader sr = new(Path.Combine(

 Path.GetDirectoryName(Assembly

 .GetExecutingAssembly().Location),

Using ConcurrentDictionary 207

 fileName));

 var del = new char[] { '\t' };

 string[] colheaders = sr.ReadLine().Split(del);

 foreach (string header in colheaders)

 {

 dt.Columns.Add(header); // add headers

 }

 while (sr.Peek() > 0)

 {

 DataRow dr = dt.NewRow(); // add rows

 dr.ItemArray = sr.ReadLine().Split(del);

 dt.Rows.Add(dr);

 }

 foreach (DataRow row in dt.Rows)

 {

 Drug drug = new(); // map to Drug object

 foreach (DataColumn column in dt.Columns)

 {

 switch (column.ColumnName)

 {

 case "PRODUCTID":

 drug.Id = row[column].ToString();

 break;

 case "PRODUCTNDC":

 drug.Ndc = row[column].ToString();

 break;

...

// REMAINING CASE STATEMENTS IN GITHUB

 }

 }

 _drugData.TryAdd(drug.Ndc, drug);

 }

}

Working with Concurrent Collections in .NET208

Note
The switch statement in the previous snippet is truncated. To get the full code listing, visit the
sample in the chapter’s GitHub repository: https://github.com/PacktPublishing/
Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.
NET-6/tree/main/chapter09/FdaNdcDrugLookup.

In this method, we are loading data from the provided fileName to StreamReader,
adding the column headers to DataTable, populating its rows from the file, and then
iterating over the rows and columns of DataTable to create Drug objects. Each Drug
object is added to ConcurrentDictionary with a call to TryAdd, using the Ndc
property as the key.

8. Now, add a GetDrugByNdc method to DrugService to complete the class. This method
will return Drug for the provided ndcCode, if found:

public Drug GetDrugByNdc(string ndcCode)

{

 bool result = _drugData.TryGetValue(ndcCode, out

 var drug);

 if (result && drug != null)

 return drug;

 else

 return new Drug();

}

9. Open the code for Form1.cs and add a private variable for the DrugService:

private DrugService _drugService = new();

10. Open the designer for Form1.cs and double-click the Load Data button to create the
btnLoad_Click event handler. Add the following implementation. Note that we made
the async event handler to allow us to use the await keyword:

private async void btnLoad_Click(object sender,

 EventArgs e)

{

 var t1 = Task.Run(() => _drugService.LoadData

 ("product.txt"));

 var t2 = Task.Run(() => _drugService.LoadData

 ("product2.txt"));

 await Task.WhenAll(t1, t2);

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/FdaNdcDrugLookup
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/FdaNdcDrugLookup
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/FdaNdcDrugLookup

Using ConcurrentDictionary 209

 btnLookup.Enabled = true;

 btnLoad.Enabled = false;

}

To load the two text files, we are creating two tasks to run in parallel before using Task.
WhenAll to await them both. Then, we can safely enable the btnLookup button and
disable the btnLoad button to prevent a second load.

11. Next, switch back to the designer view for Form1.cs and double-click the Lookup Drug button.
This will create the btnLookup_Click event handler. Add the following implementation
to that handler to find a drug name based on the NDC code entered in the UI:

private void btnLookup_Click(object sender,

 EventArgs e)

{

 if (!string.IsNullOrWhiteSpace(txtNdc.Text))

 {

 var drug = _drugService.GetDrugByNdc

 (txtNdc.Text);

 txtDrugName.Text = drug.ProprietaryName;

 }

}

12. Now, run the application and click the Load Data button. After the load process has completed
and the Lookup Drug button is enabled, enter the 70518-1120 NDC code. Click Lookup
Drug:

Figure 9.5 – Looking up the drug Prednisone by its NDC code

Working with Concurrent Collections in .NET210

13. Try some other NDC codes and see how quickly each record loads. Here are a few random NDC
codes taken from each file. If they all succeed, you know that both files loaded successfully in
parallel: 0002-0800, 0002-4112, 43063-825, and 51662-1544.

That’s it! You now have your own quick-and-dirty drug lookup application. Try replacing the drug
name TextBox with DataGrid on your own to display an entire Drug record.

In the next section, we will work with customer orders in ConcurrentQueue<T>.

Using ConcurrentQueue
In this section, we will create a sample project that is a simplified version of a realistic scenario. We
are going to create an order queuing system using ConcurrentQueue<T>. This application will
be a console application that enqueues orders for two customers in parallel. We will create five orders
for each customer, and to mix up the order of the queue, each customer queuing process will use a
different Task.Delay between calls to Enqueue. The final output should show a mix of orders
dequeued for the first customer and the second customer. Remember that ConcurrentQueue<T>
employs first in, first out (FIFO) logic:

1. Let’s start by opening Visual Studio and creating a .NET console application named
ConcurrentOrderQueue.

2. Add a new class to the project named Order:

public class Order

{

 public int Id { get; set; }

 public string? ItemName { get; set; }

 public int ItemQty { get; set; }

 public int CustomerId { get; set; }

 public decimal OrderTotal { get; set; }

}

3. Now, create a new class named O r d e r S e r v i c e containing a private
ConcurrentQueue<Order> named _orderQueue. This class is where we will
enqueue and dequeue orders for our two customers:

using System.Collections.Concurrent;

namespace ConcurrentOrderQueue

{

 public class OrderService

 {

Using ConcurrentQueue 211

 private ConcurrentQueue<Order> _orderQueue =

 new();

 }

}

4. Let’s start with the implementation of DequeueOrders. In this method, we will use a while
loop to call TryDequeue until the collection is empty, adding each order to List<Order>
to be returned to the caller:

public List<Order> DequeueOrders()

{

 List<Order> orders = new();

 while (_orderQueue.TryDequeue(out var order))

 {

 orders.Add(order);

 }

 return orders;

}

5. Now, we will create public and private EnqueueOrders methods. The public parameterless
method will call the private method twice, once for each customerId. The two calls will be
made in parallel, followed by a Task.WhenAll call to await them:

public async Task EnqueueOrders()

{

 var t1 = EnqueueOrders(1);

 var t2 = EnqueueOrders(2);

 await Task.WhenAll(t1, t2);

}

private async Task EnqueueOrders(int customerId)

{

 for (int i = 1; i < 6; i++)

 {

 var order = new Order

 {

 Id = i * customerId,

 CustomerId = customerId,

 ItemName = "Widget for customer " +

 customerId,

Working with Concurrent Collections in .NET212

 ItemQty = 20 - (i * customerId)

 };

 order.OrderTotal = order.ItemQty * 5;

 _orderQueue.Enqueue(order);

 await Task.Delay(100 * customerId);

 }

}

The private EnqueueOrders method iterates five times to create and Enqueue orders
for the given customerId. This is also used to vary ItemName, ItemQty, and the
duration of Task.Delay.

6. Finally, open Program.cs and add the following code to enqueue and dequeue the orders,
and output the resulting list to the console:

using ConcurrentOrderQueue;

Console.WriteLine("Hello, World!");

var service = new OrderService();

await service.EnqueueOrders();

var orders = service.DequeueOrders();

foreach(var order in orders)

{

 Console.WriteLine(order.ItemName);

}

7. Run the program and view the list of orders in the output. How does yours match up?

Figure 9.6 – Viewing the output of the order queue

Using ConcurrentStack 213

Try varying the delay factor or changing customerId for one or both customers in the
EnqueueOrders method to see how the order of the output changes.

Next, in the final section of the chapter, we will perform a quick experiment with the
ConcurrentStack<T> collection.

Using ConcurrentStack
In this section, we are going to experiment with BlockingCollection<T> and
ConcurrentStack<T>. In the first example in this chapter, we used BlockingCollection<T>
to read the words that started with a specific letter from the book Ulysses. We are going to make a copy
of that project and change the code that reads the lines of text to use ConcurrentStack<T>
inside BlockingCollection<T>. This will make the lines output in reverse order because a
stack uses last in, first out (LIFO) logic. Let’s get started!

1. Make a copy of the ParallelExtras.BlockingCollection project from this chapter or modify
the existing project if you prefer.

2. Open MainWindow.xaml.cs and modify the LoadBookLinesFromFile
method to pass a new ConcurrentStack<string> to the constructor of
BlockingCollection<string>:

private async Task<BlockingCollection<string>>

 LoadBookLinesFromFile()

{

 var lines = new BlockingCollection<string>(new

 ConcurrentStack<string>());

 ...

 return lines;

}

Note that the preceding method was truncated to emphasize the modified code. View the
complete method on GitHub: https://github.com/PacktPublishing/
Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.
NET-6/tree/main/chapter09/ParallelExtras.ConcurrentStack.

3. Now, when you run the application and search for the same letter as before (in our case, T),
you will see a different set of words at the beginning of the list:

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/ParallelExtras.ConcurrentStack
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/ParallelExtras.ConcurrentStack
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/ParallelExtras.ConcurrentStack

Working with Concurrent Collections in .NET214

Figure 9.7 – Searching for words that start with T in Ulysses

If you scroll to the bottom of the list, you should see the words from the beginning
of the book. Note that the list is not completely reversed because we didn’t use
ConcurrentStack<string> when parsing the words from each line. You can try
this on your own as another experiment.

That concludes our tour of the .NET concurrent collections. Let’s wrap up by summarizing what we
have learned in this chapter.

Summary
In this chapter, we delved into five of the collections in the System.Collections.Concurrent
namespace. We created five sample applications in the chapter to get some hands-on experience
with each of the concurrent collection types available in .NET 6. Through a mix of WPF, WinForms,
and .NET console application projects, we examined some real-world methods of leveraging these
collections in your own applications.

In the next chapter, we will explore the rich set of tools provided by Visual Studio for multithreaded
development and debugging. We will also discuss some techniques for analyzing and improving the
performance of parallel .NET code.

Questions 215

Questions
1. Which concurrent collection can implement different types of collections under the covers?

2. What is the default internal collection type implemented by the collection in question 1?

3. Which collection type is frequently used as an implementation of the producer/consumer pattern?

4. Which concurrent collection contains key/value pairs?

5. Which method is used to add values to ConcurrentQueue<T>?

6. Which methods are used to add and get items in ConcurrentDictionary?

7. Are extension methods used with the concurrent collections thread-safe?

Part 3:
Advanced

Concurrency
Concepts

In this part’s chapters, you will gain the advanced skills you need to debug and test your parallel and
concurrent code. You will also get some practical advice for safely canceling asynchronous work.

This part contains the following chapters:

• Chapter 10, Debugging Multithreaded Applications with Visual Studio

• Chapter 11, Canceling Asynchronous Work

• Chapter 12, Unit Testing Async, Concurrent, and Parallel Code

10
D e b u g g i n g M u l t i t h r e a d e d

A p p l i c a t i o n s w i t h V i s u a l
S t u d i o

Visual Studio 2022 is the latest version of Visual Studio on Mac and Windows. In this chapter,
we are going to learn how to leverage the power of Visual Studio when debugging multithreaded
.NET applications.

Visual Studio provides several extremely useful tools for developers who need to debug parallel and
concurrent .NET applications. This chapter will explore the tools in detail through concrete examples.

In this chapter, we will cover the following topics:

• Introducing multithreaded debugging

• Debugging threads and processes

• Switching and flagging threads

• Debugging a parallel application

By the end of this chapter, you will have the tools and knowledge you need to debug threading issues
in your parallel and concurrent C# code.

Debugging Multithreaded Applications with Visual Studio220

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for
Windows developers:

• Visual Studio 2022 version 17.2 or later

• .NET 6

• To complete any WinForms or WPF samples, you will need to install the .NET desktop
development workload for Visual Studio. These projects will run only on Windows.

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter10.

Note
The concepts and tools in this chapter only work with Visual Studio on Windows. If you are
building .NET applications on a Mac, the Rider IDE from JetBrains provides several tools
for multithreaded debugging – a Threads pane, a Frames view to view frames on a selected
thread, and a Parallel Stacks pane. Visual Studio for Mac doesn’t have this kind of support
for debugging multithreaded applications yet. You can read more about JetBrains Rider’s
multithreaded debugging in their documentation: https://www.jetbrains.com/
help/rider/Debugging_Multithreaded_Applications.html. Debugging
on a Mac is beyond the scope of this chapter.

Let’s get started by learning some basics of multithreaded debugging with Visual Studio 2022.

Introducing multithreaded debugging
Debugging is a key component of every .NET developer’s skillset. Nobody ever writes bug-free code
and introducing multithreaded constructs to your project only increases the chances of introducing
bugs. As .NET and C# have added more support for parallel programming and concurrency, Visual
Studio has added more debugging features to support those constructs.

Today, Visual Studio provides the following multithreaded debugging features for the modern
.NET developer:

• Threads: This window shows a list of the threads that are used by your application while
debugging. It also indicates which thread is active when it stopped at a breakpoint in your code.

• Parallel Stacks: This window allows developers to visualize the call stacks for each thread
in their application in a single view. Selecting a thread in the window will display call stack
information for the selected thread in the Call Stack window.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter10
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter10
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter10

Debugging threads and processes 221

• Parallel Watch: This window works like the Watch window, except that you can see the value
of a watch expression on each active thread in the application.

• Debug Location: This toolbar allows you to narrow your focus while debugging multithreaded
applications. It has fields to select a Process, Thread, and Stack Frame. There are also buttons
on the toolbar so that you can Flag and Unflag threads to be monitored.

• Tasks: This window displays each running task in the application and provides information
about the thread that is running the task, the state of the task, and its call stack. You can also see
the starting point for each task (the method or delegate that was passed to the task to be run).

• Attach to Process: This window allows you to attach the Visual Studio debugger to a process
on the local machine or a remote machine. Remote debugging can be useful when working
with multithreaded UI applications. It allows developers to debug their applications on systems
with different numbers of processor cores than what’s on their machines. They can also attach
to a remote process running on a system running other processes that will be present in a
production environment.

• GPU Threads: This window displays information about threads running on the GPU. This is
used for C++ applications and is beyond the scope of this book. To learn more, you can read the
documentation from Microsoft: https://docs.microsoft.com/visualstudio/
debugger/how-to-use-the-gpu-threads-window.

In the sections ahead, we will use these debugging tools to step through multithreaded code in projects
from some of the previous chapters of this book. Let’s start by learning about the Threads and Attach
to Process windows and the Debug Location toolbar.

Debugging threads and processes
In this section, we are going to debug BackgroundPingConsoleApp from Chapter 1. You can use
your completed project from Chapter 1 or get the project from this chapter’s GitHub repository:
https://github.com/PacktPublishing/Parallel-Programming-and-
Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter10. We
will debug the application and discover some of the features of the Debug Location toolbar and the
Threads window as we go.

Debugging a project with multiple threads

The project we’ll be working this is a simple one that creates one background thread to check whether
the network is available.

https://docs.microsoft.com/visualstudio/debugger/how-to-use-the-gpu-threads-window
https://docs.microsoft.com/visualstudio/debugger/how-to-use-the-gpu-threads-window
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter10
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter10

Debugging Multithreaded Applications with Visual Studio222

Note
The examples in this chapter will be run in the Debug configuration in Visual Studio. When
you compile and run a .NET project, you can choose to run a Debug or Release build. While
debugging, you will want to select Debug mode so that the project compiles w the symbolic
debug information. This is not included in a Release build. For more information about
build configurations, check out Microsoft Docs: https://docs.microsoft.com/
visualstudio/ide/understanding-build-configurations.

Let’s get started with our debugging example:

1. Start by opening BackgroundPingConsoleApp in Visual Studio and open Program.cs
in the C# editor.

2. Set a breakpoint on the Thread.Sleep(100) statement inside the while loop.

3. Select View | Toolbars | Debug Location to display the Debug Location toolbar:

Figure 10.1 – The Debug Location toolbar in Visual Studio

We will be using this toolbar when we start debugging. All the fields are disabled when there
is no active debugging session in Visual Studio.

4. Start debugging the project. When Visual Studio breaks at your breakpoint, notice the state of
the Debug Location toolbar:

Figure 10.2 – Debugging with the Debug Location toolbar

Debugging threads and processes 223

The toolbar provides several dropdown controls to select the Process, Thread, and Stack
Frame properties in scope. The Process dropdown will only contain a single process unless
you explicitly debug multiple processes with the Attach to Process window. You can also set
up multiple startup projects in Visual Studio to achieve this.

The Threads dropdown contains all the threads that belong to the selected process. The
selected thread in this control is the background thread we created because the breakpoint
was added within the code executed by that background thread.

The Stack Frame dropdown contains the list of frames in the current thread’s call stack.

There is a Toggle Current Thread Flagged State button to the right of the Threads
dropdown. We will learn about flagging threads later in the Switching and flagging
threads section.

5. Next, select Debug | Windows | Threads to open the Threads window:

Figure 10.3 – Debugging with the Threads window active

By default, the Threads window will open in the lower-left panel with the Output, Locals,
and Watch debugging windows.

6. Finally, expand the Threads window so that we can explore and discuss its features:

Debugging Multithreaded Applications with Visual Studio224

Figure 10.4 – Taking a closer look at the Threads window

Exploring the Threads window

The Threads window provides quite a bit of useful information in a small window. We will start by
discussing the data that’s displayed for each thread in the list:

• Process ID: By default, the list of threads is grouped by Process ID. This grouping can be
controlled by the Group by dropdown in the window’s toolbar. The Process ID grouping also
displays the number of threads in its group. This can be useful when working with a large
number of threads.

• ID: This is the ID for each thread in the list

• Managed ID: This is the Thread.ManagedThreadId property of each thread

• Category: This describes the type of thread (Main Thread, Worker Thread, and so on)

• Name: This field contains the Thread.Name property of each thread. If a thread has no
name, then <No Name> will be displayed in this field.

• Location: This field contains the current stack frame of each thread in its call stack. You can
click the dropdown in this field to display the full call stack for the thread.

Some additional fields are hidden by default. You can hide or show columns by selecting the Columns
button in the Threads window toolbar. Select or unselect the columns you would like to show or hide.
These are the columns that are hidden initially:

• Priority: This displays the priority assigned to the thread by the system

• Affinity Mask: The affinity mask determines which processors a thread can run on. This is
determined by the system

• Suspended Count: This value is used by the system to decide whether the thread can be run

• Process Name: This is the name of the process that the thread belongs to

Debugging threads and processes 225

• Process ID: This is the ID of the process that the thread belongs to

• Transport Qualifier: This identifies the machine that is connected to the debugger. This is
useful for remote debugging

Now, let’s review the toolbar items available in the Threads window:

• Search: This allows you to search for threads. You can toggle the Include call stacks in search
button on if you want the search results to encompass all call stack information

• Flag: With this dropdown button, you can select either Flag Just My Code or Flag Custom
Module Selection

• Group by: This dropdown allows you to group threads by different fields. By default, they are
grouped by Process ID

• Columns: This opens the Columns selection window so that you can customize the columns
displayed in the Threads window

• Expand/Collapse callstacks: These two buttons expand or collapse the call stack in the
Location column

• Expand/Collapse groups: These two buttons expand or collapse the thread groupings

• Freeze Threads: This freezes all selected threads in the window

• Thaw Threads: This unfreezes all selected threads in the window

Let’s try the Search functionality. Start debugging the BackgroundPingConsoleApp project. When
it hits the breakpoint, search for Anon in the Search field to find the thread whose call stack contains
our anonymous method:

Figure 10.5 – Searching in the Threads window

The Threads window should now only contain the row for our Worker Thread with the Anon part
of AnonymousMethod highlighted in yellow.

Debugging Multithreaded Applications with Visual Studio226

Now that you have some familiarity with the Threads window, let’s learn how to use it to switch and
flag threads.

Switching and flagging threads
The Threads window provides so much power when debugging a multithreaded application. We
touched on some of these features in the previous section. In this section, we will learn how to switch
threads, flag threads, and freeze or thaw a thread. Let’s start by switching between threads in our
BackgroundPingConsoleApp project.

Switching threads

You can switch context to a different thread by using the context menu in the Threads window. Run
the project and wait for the debugger to pause at the breakpoint in our anonymous method. While the
execution is paused in the debugger, right-click on the Main Thread row and select Switch to Thread.
The cursor in the debugger should switch positions to the Console.ReadLine() statement.
This is where the main thread is waiting for the user to press any key in the console:

Figure 10.6 – Switching threads in the Visual Studio debugger

You can see how this function could be extremely useful when debugging a parallel operation with
half a dozen active threads or more. Next, we will learn how to keep an eye on a specific thread with
the Flag Thread feature.

Flagging threads

In this section, you will learn how to narrow your field of view while debugging in the Threads
window. By only flagging the threads that we care about, we can reduce the clutter in the window.
Here’s how to flag threads:

Switching and flagging threads 227

1. If you aren’t still debugging the BackgroundPingConsoleApp project, start debugging it now
and wait for it to stop at the breakpoint.

2. While the debugger is paused in the application, right-click the Main Thread row and select
Flag. The flag icon should now be colored orange in that row.

3. Do the same for the row containing Worker Thread with AnonymousMethod in the call stack

4. Next, click the Show Flagged Threads Only button in the window’s toolbar:

Figure 10.7 – Showing flagged threads only in the Threads window

This makes it simpler to track only the threads that are important to our current debugging session.
You can click the button again to toggle the button off and view all threads. It is also possible to flag
threads in the Parallel Watch and Parallel Stacks windows. Their flagged state will persist across all
of these windows and the Debug Location toolbar.

There’s an even easier way to flag these two threads in our application. These are the only two threads
that are part of our application’s code. So, we can use the Flag Just My Code button in the toolbar
to flag them.

1. Unselect the Show Flagged Threads Only toolbar button

2. Right-click one of the flagged rows in the window and select Unflag All

3. Now, click Flag Just My Code in the toolbar. The same two threads will be flagged again:

Figure 10.8 – Flagging only the threads that belong to our code

Debugging Multithreaded Applications with Visual Studio228

This is much easier than selecting threads one by one in the list. It may not always be as obvious which
threads are part of our code. In the next section, we will learn how to freeze a thread.

Freezing threads

Freezing or thawing a thread in the Threads window is the equivalent of calling the SuspendThread
or ResumeThread Windows functions. If a frozen thread is not executing any code yet, it will
never start unless it is thawed. If a thread is currently executing, it will pause when the Freeze thread
is called in Visual Studio.

Let’s try freezing and thawing the worker thread in our BackgroundPingConsoleApp project to see
what happens in the debugger:

1. Before running the application, add new breakpoints at the while (true) and Console.
ReadKey() statements. Keep the existing breakpoint at Thread.Sleep(100)

2. Start debugging the application

3. When the debugger breaks on the while (true) line, right-click the worker thread that
contains AnonymousMethod and select Freeze

4. Continue debugging; it should break on the Console.ReadKey() line instead of Thread.
Sleep(100). This is because the worker thread is not currently running:

Figure 10.9 – Freezing a worker thread in the Threads window

5. Right-click the worker thread again and select Thaw

6. Now, continue debugging again. Visual Studio breaks on the Thread.Sleep(100) line
inside the anonymous method.

This shows how the functions of the Threads window could be extremely useful while debugging a
multithreaded application.

Debugging a parallel application 229

Now that we have learned how to debug our multithreaded application by switching, freezing, and
flagging threads with the Threads window, let’s learn how we can leverage additional features such as
the Parallel Stacks and Parallel Watch windows while debugging.

Debugging a parallel application
Visual Studio provides several windows for parallel debugging. While the Threads window excels for
any type of multithreaded application, other windows provide additional features and views when
working with Task objects in our applications.

We will start our tour of these features with the Parallel Stacks window.

Using the Parallel Stacks window

The Parallel Stacks window provides a visual representation of the threads or tasks in the application.
These are two distinct views in the window. You can switch between them by selecting Threads or
Tasks in the View dropdown box. The following screenshot shows an example of the Threads view
while debugging the BackgroundPingConsoleApp project:

Figure 10.10 – Viewing the Parallel Stacks window in the Threads view

Debugging Multithreaded Applications with Visual Studio230

The Parallel Stacks window contains a toolbar with the following items from left to right. You can
follow along by examining the tooltips for the toolbar items in the window in Visual Studio:

• Search: This allows the same type of search functionality that is available in the Threads window.
It has the Find Previous and Find Next buttons to the right of the Search field.

• View: This dropdown switches between the Threads and Tasks views

• Show Only Flagged: This toggle will hide any threads that are not flagged

• Toggle Method View: This will switch to a view of the currently selected method and its call stack

• Auto Scroll to Current Stack Frame: This will scroll the current stack frame into view in the
diagram while stepping through the debugger. This option is toggled on by default.

• Toggle Zoom Control: This hides or shows the zoom control on the diagram’s surface. This
option is turned on by default.

• Reverse Layout: This option mirrors the layout of the current view

• Save Diagram: This option saves the current diagram to a .png file

To examine the Tasks view of the window, we will need to open a different project that has some Task
objects. Let’s work with the Tasks view by opening a project from a previous chapter in the book:

1. Open your TaskSamples project from Chapter 5, or get a copy of this project from this chapter’s
source code on GitHub: https://github.com/PacktPublishing/Parallel-
Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/
main/chapter10.

2. Open Examples.cs and set a breakpoint on the first line of the ProcessOrders method.

3. Start debugging. When the debugger stops on the breakpoint, select Debug | Windows |
Parallel Stacks.

4. Switch to the Tasks view in the Parallel Stacks window:

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter10
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter10
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter10

Debugging a parallel application 231

Figure 10.11 – The Parallel Stacks window in the Tasks view

No tasks have been started yet, so there isn’t much to see here. There is a single Async
Logical Stack block that looks like it is ready to start analyzing some async work.

5. Add a breakpoint on the Tasks.WaitAll statement and click Continue

Note
It is possible to configure breakpoints in Visual Studio by right-clicking on the breakpoint you
want to modify and clicking Settings. If you select Filter under Conditions in the breakpoint
settings, you can add a filter based on one or more ThreadId or ThreadName values. This
will ensure that the debugger will only stop on the current breakpoint when the desired thread(s)
are executing that line of code. To read more about breakpoint conditions and filters, check out
this article on Microsoft Docs: https://docs.microsoft.com/visualstudio/
debugger/using-breakpoints#set-a-filter-condition.

6. Now, examine the Parallel Stacks window again:

https://docs.microsoft.com/visualstudio/debugger/using-breakpoints#set-a-filter-condition
https://docs.microsoft.com/visualstudio/debugger/using-breakpoints#set-a-filter-condition

Debugging Multithreaded Applications with Visual Studio232

Figure 10.12 – The Parallel Stacks window while tasks are active

Note
It can be challenging to catch the tasks in this window while they are still executing if they are
fast-running methods. You may have to run the application several times to hit this breakpoint
if one or more of the Task objects has not been completed yet.

In this case, the Parallel Stacks window has captured the execution of one running task and another
preparing to run. There are some differences between this Tasks view and some of the thread analysis
we have done in this chapter:

• Only actively running tasks are shown in the Tasks view

• The Tasks view’s stack attempts to display only the relevant call stack information. Stack frames
may be trimmed from the top and bottom if they are not relevant. If you need to see the entire
call stack, switch back to the Threads view.

Debugging a parallel application 233

• A separate block is displayed for each active task in the Tasks view, even if they are assigned
to the same thread.

You can hover over a line in a task’s call stack to view more information about its thread and stack frame:

Figure 12.13 – Viewing more information about a call stack frame

If you want to pivot the Tasks view to a particular method, you can use the Toggle Method View button:

1. Start a new debugging session in the TaskSamples project

2. Set a new breakpoint on the return orders statement in the PrepareOrders method

3. Click Continue. The Parallel Watch window will display the active tasks when the debugger
breaks inside the PrepareOrders method.

4. Click the Toggle Method View button. You now have a method-focused view of the
Tasks view and can hover over the PrepareOrders method to get more call stack and
thread information:

Debugging Multithreaded Applications with Visual Studio234

Figure 10.14 – Leveraging the Method View area of the Parallel Stacks window

Next, we will learn how to view the state of variables across different threads by using the Parallel
Watch window.

Using the Parallel Watch window

The Parallel Watch window is similar to the Watch window in Visual Studio, but it displays additional
information about the value of the watched expression across the threads with access to the data in
the expression.

In this example, we will modify the Examples class in the TaskSamples project to add a state that
will be available to multiple threads:

1. Start by adding a private variable to the Examples class:

private List<Order> _sharedOrders;

2. Add a line to ProcessOrders to assign orders to _sharedOrders:

private List<Order> PrepareOrders(List<Order> orders)

{

 // TODO: Prepare orders here

 _sharedOrders = orders;

 return orders;

}

3. Keep the breakpoints from the previous example and start debugging. Continue until the
debugger breaks on the return orders statement inside ProcessOrders.

4. Select Debug | Windows | Parallel Watch 1 to open the Parallel Watch 1 window. You can
open up to four Parallel Watch windows to separate your watched expressions.

5. In the Parallel Watch 1 window, you will see a line for the current thread in context. Add a
watch to the _sharedOrders private variable:

Debugging a parallel application 235

Figure 10.15 – Adding a watched expression in Parallel Watch 1 window

The window indicates that Task 6 has _sharedOrders in scope and that the count of
orders in the variable is 0.

6. Right-click on Main Thread in the Threads window and select Switch to Thread. In the Parallel
Watch 1 window, a task is no longer in scope, so the header label has changed from Task to
Thread, and the ID property of Main Thread will be displayed:

Figure 10.16 – Viewing the watched variable on Main Thread

7. Finally, select Debug | Windows | Tasks to open the Tasks window:

Debugging Multithreaded Applications with Visual Studio236

Figure 10.17 – Viewing the Tasks window while debugging

The Tasks window will show information about the tasks in scope in the debugging session. The
following columns are displayed in the window:

• Flag: An icon indicating whether the current task has been flagged. You can click this field to
flag or unflag a task.

• ID: The ID of the task

• Status: The Task.Status properties of the task

• Start Time (sec): This indicates how many seconds into the debugging session the task started

• Duration (sec): This indicates how long the task has been running

• Location: This shows the call stack’s position for the task on the thread

• Task: The initial method where the task started. Any parameters that have been passed will
also be shown in this field.

Several other hidden fields can be shown by right-clicking in the window and selecting Columns:

Debugging a parallel application 237

Figure 10.18 – Adding or removing columns from the Tasks window

You can sort and group the tasks in the Tasks window similar to how the Threads window works.
The difference is that the Tasks window does not have a toolbar. All operations are performed with
the right-click context menu.

The other tool you can use while debugging parallel .NET code is the Debug Location toolbar. If it is
not already displayed in Visual Studio, you can open it by going to View | Toolbars | Debug Location.
While you’re debugging, the toolbar functionality lights up:

Figure 10.19 – Viewing the Debug Location toolbar while debugging

From the toolbar, you can select the active Process, Thread, and Stack Frame. It’s also easy to toggle
the flagged state of the currently selected thread.

That completes our tour of the debug windows available to .NET parallel programmers. Let’s wrap up
by reviewing everything we learned in this chapter.

Debugging Multithreaded Applications with Visual Studio238

Summary
In this chapter, we learned about the Visual Studio features available to multithreaded application
developers. We started by working with threads in the Threads window. This is the most universal
debugging window when working doing parallel programming in .NET. It can provide essential
information, regardless of whether you are working with async tasks, parallel loops, or standard
Thread objects.

Next, we learned how to switch, flag, and freeze our threads while debugging. Finally, we looked at
some of the advanced debugging tools for developers who are using Task objects or async/await
in their code. The Parallel Stacks and Parallel Watch windows take task debugging to the next level.
Finally, we took a quick look at the Tasks window and the Debug Location toolbar.

In the next chapter, Chapter 11, we will dive deeper into the different methods available to cancel
concurrent and parallel work with .NET.

Questions
1. How can you debug multiple processes in Visual Studio?

2. What is the default grouping of threads in the Threads window?

3. How can you add more columns to the Tasks or Threads window?

4. Which debug window displays a visual representation of the current threads or tasks?

5. What file format can you export from the Parallel Stacks window?

6. How many Parallel Watch windows can you open?

7. Which Visual Studio toolbar provides information about the processes and threads you are
currently debugging?

8. How can you filter the Threads window to only show the threads that have been created for
your code?

11
C a n c e l i n g A s y n c h r o n o u s

Wo r k

In the previous chapters, we’ve looked at a few examples of how to cancel threads and tasks. This
chapter will explore more of the methods available to cancel concurrent and parallel work with C#
and .NET. The methods in this chapter will provide alternative ways to cancel background operations
using callbacks, polling, and wait handles. You will gain a deeper understanding of how to safely cancel
asynchronous work with a variety of methods using some practical scenarios.

In this chapter, you will learn about the following topics:

• Canceling managed threads

• Canceling parallel work

• Discovering patterns for thread cancellation

• Handling multiple cancelation sources

By the end of this chapter, you will understand how to cancel different types of asynchronous and
parallel tasks.

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for
Windows developers:

• Visual Studio 2022 version 17.2 or later.

• .NET 6.

• To complete any WinForms or WPF samples, you will need to install the .NET desktop
development workload for Visual Studio. These projects will only run on Windows.

Canceling Asynchronous Work240

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter11.

Canceling managed threads
Canceling asynchronous work in .NET is based on the use of a cancellation token. A token is a
simple object that is used to signal that a cancellation request has been made to another thread. The
CancellationTokenSource object manages these requests and contains a token. If you want
to cancel several operations with the same trigger, the same token should be provided to all of the
threads to be canceled.

A CancellationTokenSource instance has a Token property to access the
CancellationToken property and pass it to one or more asynchronous operations. The
request to cancel can only be made from the CancellationTokenSource object. The
CancellationToken property provided to the other operations receives the signal to cancel
but cannot initiate a cancellation.

CancellationTokenSource implements the IDisposable interface, so be sure to call
Dispose when you are freeing your managed resources. A using statement or block to automatically
dispose of the token source would be preferred if it is practical for your workflow.

It is important to understand that cancellation is not forced on the listening code. The asynchronous
code that receives a cancellation request must determine whether it can currently cancel its work. It
might decide to immediately cancel, cancel after finishing some intermediate tasks, or finish its work
and ignore the request. There can be valid reasons why a routine will ignore a request to cancel. It is
possible that the work is almost complete or that canceling in the current state will cause some data
corruption. The decision to cancel must be mutual between the requestor and the listener.

Let’s look at an example of how to cooperatively cancel some work being processed on a background
thread on the ThreadPool thread:

1. In Visual Studio, create a new .NET 6 console application named
CancelThreadsConsoleApp.

2. Add a new class named ManagedThreadsExample.

3. Create a method named ProcessText in the ManagedThreadsExample class:

public static void ProcessText(object? cancelToken)

{

 var token = cancelToken as CancellationToken?;

 string text = "";

 for (int x = 0; x < 75000; x++)

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter11
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter11
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter11

Canceling managed threads 241

 {

 if (token != null && token.Value

 .IsCancellationRequested)

 {

 Console.WriteLine($"Cancellation request

 received. String value: {text}");

 break;

 }

 text += x + " ";

 Thread.Sleep(500);

 }

}

This method appends the value of the iterator variable, x, to the string variable of text
until a cancellation request is received. There is a Thread.Sleep(500) statement to
allow the calling method some time to cancel the operation.

4. Next, create a method named CancelThread, in Program.cs:

private static void CancelThread()

{

 using CancellationTokenSource tokenSource = new();

 Console.WriteLine("Starting operation.");

 ThreadPool.QueueUserWorkItem(new

 WaitCallback(ManagedThreadsExample

 .ProcessText), tokenSource.Token);

 Thread.Sleep(5000);

 Console.WriteLine("Requesting cancellation.");

 tokenSource.Cancel();

 Console.WriteLine("Cancellation requested.");

}

This method calls ThreadPool.QueueUserWorkItem to queue the
ProcessText method in the ThreadPool thread. The method also receives
a cancellation token from tokenSource.Token. After waiting for five seconds,
tokenSource.Cancel is called, and ProcessText will receive the
cancellation request.

Notice that tokenSource is created in a using statement. This ensures that it will be
properly disposed of when it goes out of scope.

Canceling Asynchronous Work242

5. Add a call to CancelThread to the Main method in Program.cs:

static void Main(string[] args)

{

 CancelThread();

 Console.ReadKey();

}

6. Finally, run the application and observe the console output:

Figure 11.1 – Running the CancelThreadsConsoleApp project

The for loop should have enough time to execute 9 or 10 times before receiving the request to cancel.
How does your output match up?

Now that we have covered some basics of cancellation and worked with a common method of using
a cancellation token, let’s create some examples of how to cancel parallel loops and PLINQ queries.

Canceling parallel work
In this section, we will work with some examples of canceling parallel operations. There are a few
operations that fall into this realm. There are static parallel operations that are part of the System.
Threading.Tasks.Parallel class and there are PLINQ operations. Both of these types use
a CancellationToken property, as we used in our managed threading example in the previous
section. However, handling the cancellation request is slightly different. Let’s look at an example to
understand the differences.

Canceling parallel work 243

Canceling a parallel loop

In this section, we will create a sample that illustrates how to cancel a Parallel.For loop. The
same method of cancellation is leveraged for the Parallel.ForEach method. Perform the
following steps:

1. Open the CancelThreadsConsoleApp project from the previous section.

2. In the ManagedThreadsExample class, create a new ProcessTextParallel
method with the following implementation:

public static void ProcessTextParallel(object?

 cancelToken)

{

 var token = cancelToken as CancellationToken?;

 if (token == null) return;

 string text = "";

 ParallelOptions options = new()

 {

 CancellationToken = token.Value,

 MaxDegreeOfParallelism =

 Environment.ProcessorCount

 };

 try

 {

 Parallel.For(0, 75000, options, (x) =>

 {

 text += x + " ";

 Thread.Sleep(500);

 });

 }

 catch (OperationCanceledException e)

 {

 Console.WriteLine($"Text value: {text}.

 {Environment.NewLine} Exception

 encountered: {e.Message}");

 }

}

Canceling Asynchronous Work244

Essentially, the preceding code does the same thing as the ProcessText method in
our last example. It appends a numeric value to the text variable until a cancellation is
requested. Let’s examine the differences:

 � First, we are setting token.Value to the CancellationToken property of a
ParallelOptions object. These options are passed as the third parameter to the
Parallel.For method.

 � The second major difference is that we handle the cancellation request by catching an
OperationCanceledException type. This exception type will be thrown when
our other code in Program.cs requests a cancellation.

3. Next, add a method named CancelParallelFor to Program.cs:

private static void CancelParallelFor()

{

 using CancellationTokenSource tokenSource = new();

 Console.WriteLine("Press a key to start, then

 press 'x' to send cancellation.");

 Console.ReadKey();

 Task.Run(() =>

 {

 if (Console.ReadKey().KeyChar == 'x')

 tokenSource.Cancel();

 Console.WriteLine();

 Console.WriteLine("press a key");

 });

 ManagedThreadsExample.ProcessTextParallel

 (tokenSource.Token);

}

In this method, the user is instructed to press a key to start the operation and to press the X
key when they are ready to cancel the operation. The code to handle receiving x KeyChar
from the console and sending a Cancel request is performed on another thread in order to
keep the current thread free to call ProcessTextParallel.

4. Finally, update the Main method to call CancelParallelFor and comment out the call
to CancelThread:

static void Main(string[] args)

{

 //CancelThread();

Canceling parallel work 245

 CancelParallelFor();

 Console.ReadKey();

}

5. Now run the project. Follow the prompts to cancel the Parallel.For loop, and examine
the output:

Figure 11.2 – Canceling a Parallel.For loop from the console

Notice how the numbers are not in sequence at all. In this case, it appears that the
Parallel.For operation used two different threads. The first thread started at 0, while
the second thread was operating on integers starting with 37500. This is the midway point
of the maximum value of 75000 provided to the method parameter.

In the next section, we will briefly examine how to cancel a PLINQ query.

Canceling a PLINQ query

Canceling a PLINQ query is also achieved by catching the OperationCanceledException
type. However, instead of using the ParallelOptions object that is used with parallel loops,
you can call WithCancellation as part of the query.

To learn how to cancel a PLINQ query, let’s walk through an example:

1. Start this example by adding a method named ProcessNumsPlinq , to the
ManagedThreadsExample class:

public static void ProcessNumsPlinq(object?

 cancelToken)

{

 int[] input = Enumerable.Range(1,

Canceling Asynchronous Work246

 25000000).ToArray();

 var token = cancelToken as CancellationToken?;

 if (token == null) return;

 int[]? result = null;

 try

 {

 result =

 (from value in input.AsParallel()

 .WithCancellation(token.Value)

 where value % 7 == 0

 orderby value

 select value).ToArray();

 }

 catch (OperationCanceledException e)

 {

 Console.WriteLine($"Exception encountered:

 {e.Message}");

 }

}

This method creates an array of 25 million integers and uses the PLINQ query to
determine which of them are divisible by seven. The token.Value is passed to the
WithCancellation operation in the query. When an exception is thrown by a
cancellation request, the exception details are written to the console.

2. Next, add a method named CancelPlinq to Program.cs:

private static void CancelPlinq()

{

 using CancellationTokenSource tokenSource = new();

 Console.WriteLine("Press a key to start.");

 Console.ReadKey();

 Task.Run(() =>

 {

 Thread.Sleep(100);

 Console.WriteLine("Requesting cancel.");

 tokenSource.Cancel();

 Console.WriteLine("Cancel requested.");

 });

Discovering patterns for thread cancellation 247

 ManagedThreadsExample.ProcessNumsPlinq

 (tokenSource.Token);

}

This time, the cancellation will be triggered automatically after 100 milliseconds.

3. Update the Main method to call CancelPlinq, and run the application:

Figure 11.3 – Canceling a PLINQ operation in the console application

Unlike the previous examples, there is no query output to examine. You cannot get partial
output from a PLINQ query. The result variable will be null.

In the next section, we will work with some different methods of cancellation.

Discovering patterns for thread cancellation
There are different methods of listening for cancellation requests from a thread or task. So far, we have
seen examples of managing these requests by either handling the OperationCanceledException
type or checking the value of IsCancellationRequested. The pattern of checking
IsCancellationRequested, usually inside a loop, is called polling. First, we will see another
example of this pattern. The second pattern we will examine is receiving the notification by registering
a callback method. The final pattern that we will cover in this section is listening to cancellation
requests with wait handles using ManualResetEvent or ManualResetEventSlim.

Let’s start by trying another example of handling a cancellation request by polling.

Canceling with polling

In this section, we will create another example that uses polling to cancel a background task. The
previous example of polling was running in a background thread on the ThreadPool thread.
This example will also start a ThreadPool thread, but it will leverage Task.Run to start the

Canceling Asynchronous Work248

background thread. We will create and process a million System.Drawing.Point objects,
finding those with a Point.X value of less than 50. Users will have the option to cancel processing
by pressing the X key:

1. Start by creating a new .NET console application project named CancellationPatterns

2. Add a new class to the project named PollingExample

3. Add a private static method to PollingExample named GeneratePoints. This will
generate the number of Point objects that we desire with random X values:

private static List<Point> GeneratePoints(int count)

{

 var rand = new Random();

 var points = new List<Point>();

 for (int i = 0; i <= count; i++)

 {

 points.Add(new Point(rand.Next(1, count * 2),

 100));

 }

 return points;

}

4. Don’t forget to add a using statement to use the Point type:

using System.Drawing;

5. Next, add a private static method named FindSmallXValues to PollingExample.
This method loops through the list of points and outputs those with an X value of less than
50. Each time through the loop, it checks the token for cancellation and breaks out of the loop
when it occurs:

private static void FindSmallXValues(List<Point>

 points, CancellationToken token)

{

 foreach (Point point in points)

 {

 if (point.X < 50)

 {

 Console.WriteLine($"Point with small X

 coordinate found. Value: {point.X}");

 }

Discovering patterns for thread cancellation 249

 if (token.IsCancellationRequested)

 {

 break;

 }

 Thread.SpinWait(5000);

 }

}

A Thread.SpinWait statement is added at the end of the loop to give users some time
to cancel the operation.

6. Add a public static method to PollingExample named CancelWithPolling:

public static void CancelWithPolling()

{

 using CancellationTokenSource tokenSource = new();

 Task.Run(() => FindSmallXValues(GeneratePoints

 (1000000), tokenSource.Token), tokenSource

 .Token);

 if (Console.ReadKey(true).KeyChar == 'x')

 {

 tokenSource.Cancel();

 Console.WriteLine("Press a key to quit");

 }

}

The preceding method creates the CancellationTokenSource object and passes
it to FindSmallXValues and also Task.Run. If you wanted to cancel the Task,
instead of breaking out of the loop when IsCancellationRequested becomes
true, you would call token.ThrowIfCancellationRequested. This would
throw an exception in the Task. The CancelWithPolling method would then
require a try/catch block around the Task.Run call. It’s a best practice to use
exception handling with all multithreaded code anyway. In this case, you would have two
exception handlers: one to handle OperationCanceledException and a second to
handle AggregateException.

Additionally, the CancelWithPolling method has code to determine when the user
presses the X key to cancel the operation.

Canceling Asynchronous Work250

7. Finally, open Program.cs and add some code to execute the sample:

using CancellationPatterns;

Console.WriteLine("Hello, World! Press a key to start,

 then press 'x' to cancel.");

Console.ReadKey();

PollingExample.CancelWithPolling();

Console.ReadKey();

8. Now run the application, and examine the output:

Figure 11.4 – Running the cancellation polling example

Depending on how long you wait before canceling, you might have a different number of points
found by the process.

In the next section, we will learn how you can register a callback method to handle cancellation requests.

Canceling with callbacks

Some code in .NET supports the registration of a callback method to cancel processing. One class
that supports cancellation with callbacks is System.Net.WebClient. In this example, we will
use WebClient to start downloading a file. The download will be canceled after three seconds. To

Discovering patterns for thread cancellation 251

ensure the file download is large enough that it has not been completed after three seconds, we will
download a large lossless audiobook file from Internet Archive (https://archive.org/).
We will download the first part of the audiobook of The Odyssey by Homer. This file is 471.1 MB.
You can view all of the free downloads for this book at https://archive.org/details/
lp_the-odyssey_homer-anthony-quayle. Perform the following steps:

1. Open the CancellationPatterns project and add a new class named CallbackExample

2. Start by adding a method named GetDownloadFileName to build the path where the file
will be downloaded. We will download it to the same folder where our assembly is executing:

private static string GetDownloadFileName()

{

 string path = System.Reflection.Assembly

 .GetAssembly(typeof(CallbackExample)).Location;

 string folder = Path.GetDirectoryName(path);

 return Path.Combine(folder, "audio.flac");

}

3. Next, add an async method named DownloadAudioAsync. This method will handle
the file download and cancellation. There are several exception handlers to catch any type of
exception that the DownloadFileTaskAsync method might throw. In turn, all of them
throw an OperationCanceledException type to be handled by the parent method:

private static async Task DownloadAudioAsync

 (CancellationToken token)

{

 const string url = "https://archive.org/download/

 lp_the-odyssey_homer-anthony-quayle/disc1/

 lp_the-odyssey_homer-anthony-quayle

 _disc1side1.flac";

 using WebClient webClient = new();

 token.Register(webClient.CancelAsync);

 try

 {

 await webClient.DownloadFileTaskAsync(url,

 GetDownloadFileName());

 }

 catch (WebException we)

 {

Canceling Asynchronous Work252

 if (we.Status == WebExceptionStatus

 .RequestCanceled)

 throw new OperationCanceledException();

 }

 catch (AggregateException ae)

 {

 foreach (Exception ex in ae.InnerExceptions)

 {

 if (ex is WebException exWeb &&

 exWeb.Status == WebExceptionStatus

 .RequestCanceled)

 throw new OperationCanceled

 Exception();

 }

 }

 catch (TaskCanceledException)

 {

 throw new OperationCanceledException();

 }

}

4. Add a using statement for the WebClient type:

using System.Net;

5. Now add a public async method named CancelWithCallback. This method
calls DownloadAudioAsync, waits for three seconds, and calls Cancel on the
CancellationTokenSource object. Awaiting the task in a try block means we can
handle the OperationCanceledException type directly. If you used task.Wait
instead, you would have to catch AggregateException and check whether one of the
InnerException objects is an OperationCanceledException type:

public static async Task CancelWithCallback()

{

 using CancellationTokenSource tokenSource = new();

 Console.WriteLine("Starting download");

 var task = DownloadAudioAsync(tokenSource.Token);

 tokenSource.Token.WaitHandle.WaitOne

 (TimeSpan.FromSeconds(3));

Discovering patterns for thread cancellation 253

 tokenSource.Cancel();

 try

 {

 await task;

 }

 catch (OperationCanceledException ex)

 {

 Console.WriteLine($"Download canceled.

 Exception: {ex.Message}");

 }

}

In this step, it might be necessary to adjust the number of seconds in the tokenSource.
Token.WaitHandle.WaitOne call. The timing can vary based on your computer’s
download speed and processing speed. Try adjusting the value if you do not see a
Download canceled message in the console output.

6. Finally, comment out the existing code in Program.cs, and add the following code to call
the CallbackExample class:

using CancellationPatterns;

await CallbackExample.CancelWithCallback();

Console.ReadKey();

7. Now run the application, and examine the output:

Figure 11.5 – Canceling a download with CancellationToken and a callback

Canceling Asynchronous Work254

You can verify that the download started and did not complete by looking in the folder
where your assembly was running. You should see a file named audio.flac with a file size
of 0 KB. You can safely delete this file as it could cause exceptions if you try to download
it again.

Now that we have seen how to cancel a background task with a callback method, let’s wrap up this
section by working through an example with wait handles.

Canceling with wait handles

In this section, we will use ManualResetEventSlim to cancel a background task that
would not otherwise be responsive to user input. This object has Set and Reset events to start/
resume or pause an operation. When operations have not yet started or have been paused, calling
ManualResetEventSlim.Wait will cause the operation to pause on that statement until
another thread calls Set to start or resume processing.

This example will iterate over 100,000 integers and output to the console for each even number. This
process can be started, paused, resumed, or canceled thanks to the ManualResetEventSlim
object and CancellationToken. Let’s try this example in our project:

1. Start by adding a WaitHandleExample class to the CancellationPatterns project.

2. Add a private variable named resetEvent to the new class:

private static ManualResetEventSlim resetEvent =

 new(false);

3. Add a private static method named ProcessNumbers to the class. This method iterates over
the numbers and only continues processing when resetEvent.Wait allows it to proceed:

private static void ProcessNumbers(IEnumerable<int>

 numbers, CancellationToken token)

{

 foreach (var number in numbers)

 {

 if (token.IsCancellationRequested)

 {

 Console.WriteLine("Cancel requested");

 token.ThrowIfCancellationRequested();

 }

 try

 {

 resetEvent.Wait(token);

Discovering patterns for thread cancellation 255

 }

 catch (OperationCanceledException)

 {

 Console.WriteLine("Operation canceled.");

 break;

 }

 if (number % 2 == 0)

 Console.WriteLine($"Found even number:

 {number}");

 Thread.Sleep(500);

 }

}

4. Next, add a public static async method named CancelWithResetEvent to the class. This
method creates the list of numbers to process, calls ProcessNumbers within a Task.
Run call, and uses a while loop to listen for user input:

public static async Task CancelWithResetEvent()

{

 using CancellationTokenSource tokenSource = new();

 var numbers = Enumerable.Range(0, 100000);

 _ = Task.Run(() => ProcessNumbers(numbers,

 tokenSource.Token), tokenSource.Token);

 Console.WriteLine("Use x to cancel, p to pause, or

 s to start or resume,");

 Console.WriteLine("Use any other key to quit the

 program.");

 bool running = true;

 while (running)

 {

 char key = Console.ReadKey(true).KeyChar;

 switch (key)

 {

 case 'x':

 tokenSource.Cancel();

 break;

 case 'p':

Canceling Asynchronous Work256

 resetEvent.Reset();

 break;

 case 's':

 resetEvent.Set();

 break;

 default:

 running = false;

 break;

 }

 await Task.Delay(100);

 }

}

5. Finally, update Program.cs to contain the following code:

using CancellationPatterns;

await WaitHandleExample.CancelWithResetEvent();

Console.ReadKey();

6. Run the program to test it. Follow the console prompts to start, pause, resume, and cancel the
process:

Figure 11.6 – Testing the CancelWithResetEvent method in the console

You should see in the console output that several event numbers have been found before the operation
is canceled. The amount of processing completed could vary based on your computer’s processors.

Handling multiple cancellation sources 257

In the next section, we will wrap up cancellation by learning how to handle cancellation requests
from multiple sources.

Handling multiple cancellation sources
Background tasks can leverage CancellationTokenSource to receive cancellation
requests from as many sources as necessary. The static CancellationTokenSource.
CreateLinkedTokenSource method accepts an array of CancellationToken objects
to create a new CancellationTokenSource object that will notify us of cancellation if any of
the source tokens receives a request to cancel.

Let’s look at a quick example of how to implement this in our CancellationPatterns project:

1. First, open the PollingExample class. We are going to create an overload of the
CancelWithPolling method that accepts a CancellationTokenSource parameter.
The two overloads of CancelWithPolling will look like this:

public static void CancelWithPolling()

{

 using CancellationTokenSource tokenSource = new();

 CancelWithPolling(tokenSource);

}

public static void CancelWithPolling

 (CancellationTokenSource tokenSource)

{

 Task.Run(() => FindSmallXValues(GeneratePoints

 (1000000), tokenSource.Token),

 tokenSource.Token);

 if (Console.ReadKey(true).KeyChar == 'x')

 {

 tokenSource.Cancel();

 Console.WriteLine("Press a key to quit");

 }

}

2. Next, add a new class named MultipleTokensExample.

3. Create a method named C a n c e l W i t h M u l t i p l e T o k e n s in the
MultipleTokensExample class. This method accepts parentToken as a parameter,
creates its own tokenSource, and then combines them into a combinedSource object
to pass to the CancelWithPolling method:

Canceling Asynchronous Work258

public static void CancelWithMultipleTokens

 (CancellationToken parentToken)

{

 using CancellationTokenSource tokenSource = new();

 using CancellationTokenSource combinedSource =

 CancellationTokenSource.CreateLinked

 TokenSource(parentToken, tokenSource

 .Token);

 PollingExample.CancelWithPolling(combinedSource);

 Thread.Sleep(1000);

 tokenSource.Cancel();

}

We’re calling tokenSource.Cancel, but if Cancel is invoked on any of the three
CancellationTokenSource objects, the processing in CancellWithPolling
will receive a cancellation request.

4. Add some code to Program.cs to call CancelWithMultipleTokens:

using CancellationPatterns;

CancellationTokenSource tokenSource = new();

MultipleTokensExample.CancelWithMultipleTokens

 (tokenSource.Token);

Console.ReadKey();

5. Run the program, and you should see an output similar to what you saw in the subsection
Canceling with polling of the section Discovering patterns for thread cancellation.

Try changing which CancellationTokenSource object is used to invoke Cancel. The output
should remain the same regardlesss of the source of the cancellation request.

A background Task will also end if you throw an exception within the Task. This has a similar effect
of ending the background processing, but TaskStatus will be Faulted instead of Canceled.

This completes our review of cancellation requests from multiple sources and our tour of canceling
tasks and threads with C# and .NET. Let’s review what we have learned in this chapter.

Summary 259

Summary
In this chapter, we learned a number of new ways to cancel background threads and tasks. It is important
to provide your users with a method of canceling long-running tasks or automatically canceling them
when users or the operating system closes or suspends your application.

After working through the examples in this chapter, you now understand how to use polling, callbacks,
and wait handles to cooperatively cancel background tasks. Additionally, you learned how to handle
cancellation requests from more than one source.

In the next chapter, we will look at how .NET developers can unit test code that employs multithreaded
constructs.

Questions
1. Which property of a CancellationToken object indicates whether a cancellation request

has been made?

2. Which data type provides a CancellationToken object?

3. What exception type is thrown when ThrowIfCancellationRequested is invoked?

4. What cancellation pattern is used by the WebClient object in .NET?

5. Which .NET type can pause or resume operations with a CancellationToken object?

6. Which reset event is used to pause processing?

7. Which static method in CancellationTokenSource can combine multiple
CancellationToken objects into a single source?

12
Unit Testing Async,

Concurrent, and Parallel Code

Unit testing asynchronous, concurrent, and parallel code can be a challenge for .NET developers.
Fortunately, there are some steps you can take to help ease the difficulty. This chapter will provide
some concrete advice and useful examples of how developers can unit test code that leverages multi-
threaded constructs. These examples will illustrate how unit tests can still be reliable while covering
code that performs multithreaded operations. In addition, we will explore a third-party tool that
facilitates the creation of automated unit tests that monitor your code for potential memory leaks.

Creating unit tests for your .NET projects is important to maintain the health of your code base as it
grows and evolves. When developers make changes to code that has unit test coverage, they can run
the existing tests to feel confident that no existing functionality has been broken by the code changes.
Visual Studio makes it simple to create, run, and maintain unit test projects throughout the life cycle
of your code.

The Test Explorer window in Visual Studio can detect and run unit tests created with Microsoft’s
MSTest framework, as well as third-party frameworks such as NUnit and xUnit.net. Whether you are
developing applications for Windows, mobile devices, or the cloud, you should always plan to develop
a suite of unit tests for your projects and define goals for test coverage.

Note
This chapter assumes that you have some familiarity with unit testing and good unit testing
practices. For a good primer on unit testing projects with xUnit.net, you can review Microsoft’s
documentation at https://docs.microsoft.com/dotnet/core/testing/
unit-testing-with-dotnet-test and at https://docs.microsoft.com/
visualstudio/test/getting-started-with-unit-testing.

https://docs.microsoft.com/dotnet/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/dotnet/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/visualstudio/test/getting-started-with-unit-testing
https://docs.microsoft.com/visualstudio/test/getting-started-with-unit-testing

Unit Testing Async, Concurrent, and Parallel Code262

In this chapter, we will cover the following:

• Unit testing asynchronous code

• Unit testing concurrent code

• Unit testing parallel code

• Checking for memory leaks with unit tests

By the end of this chapter, you will be armed with tools and advice to help you confidently write
modern multithreaded code with unit test coverage.

Note
The unit tests in this chapter are created with the xUnit.net unit testing framework. You can
achieve the same results with your unit testing framework of choice, including MSTest and
NUnit. The memory unit testing framework we will be demonstrating later in this chapter uses
xUnit.net, but it also supports MSTest and NUnit.

Technical requirements
To follow along with the examples in this chapter, the following software is recommended for
Windows developers:

• Visual Studio 2022 version 17.2 or later

• .NET 6

• A JetBrains dotMemory Unit standalone console runner

All the code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter12.

Let’s get started by examining how to write unit tests that cover async C# methods.

Unit testing asynchronous code
Unit testing asynchronous code requires the same approach as writing good asynchronous C# code.
If you need a refresher on how to work with async methods, you can review Chapter 5.

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter12
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter12
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter12

Unit testing asynchronous code 263

When writing a unit test for an async method, you will use the await keyword to wait for the method
to complete. This requires that your unit test method is async and returns Task. Just like other
C# code, creating async void methods is not permitted. Let’s look at a very simple test method:

[Fact]

private async Task GetBookAsync_Returns_A_Book()

{

 // Arrange

 BookService bookService = new();

 var bookId = 123;

 // Act

 var book = await bookService.GetBookAsync(bookId);

 // Assert

 Assert.NotNull(book);

 Assert.Equal(bookId, book.Id);

}

This probably looks like most tests you have written for synchronous code. There are only a couple
of differences:

• First, the test method is async and returns Task.

• Second, the call to GetBookAsync uses the await keyword to wait for the result.
Otherwise, this test follows the typical Arrange–Act–Assert pattern and tests the result as you
typically would.

Let’s create a simple project to try this in Visual Studio and see the results:

1. Start by creating a new Class Library project in Visual Studio named AsyncUnitTesting:

Unit Testing Async, Concurrent, and Parallel Code264

Figure 12.1 – Creating a new Class Library project

2. Next, we are going to add a test project to the AsyncUnitTesting solution. Right-click on the
solution file in Solution Explorer and click on Add | New project. Select the xUnit Test Project
template and name the project AsyncUnitTesting.Tests:

Unit testing asynchronous code 265

Figure 12.2 – Adding an xUnit Test project to the solution

3. In the AsyncUnitTesting project, rename the Class1.cs file BookOrderService.cs.
When Visual Studio asks whether you want to rename all uses of Class1, select Yes.

4. Open the BookOrderService class and add an async method named
GetCustomerOrdersAsync:

public async Task<List<string>>

 GetCustomerOrdersAsync(int customerId)

{

 if (customerId < 1)

 {

 throw new ArgumentException("Customer ID must

 be greater than zero.", nameof

 (customerId));

 }

 var orders = new List<string>

 {

 customerId + "1",

Unit Testing Async, Concurrent, and Parallel Code266

 customerId + "2",

 customerId + "3",

 customerId + "4",

 customerId + "5",

 customerId + "6"

 };

 // Simulate time to fetch orders

 await Task.Delay(1500);

 return orders;

}

This method takes customerId as a parameter and returns List<string>
containing the order numbers. If customerId provided is less than 1,
ArgumentException is thrown. Otherwise, a list of six order numbers is created,
with customerId as the prefix. After injecting Task.Delay of 1500 milliseconds,
orders is returned to the calling method.

5. Next, right-click the AsyncUnitTesting.Tests project and click on Add | Project Reference. In
the Reference Manager dialog, check the box for the AsyncUnitTesting project and click OK.

6. Now, rename the UnitTest1 class BookOrderServiceTests and open the file in
the Visual Studio editor.

7. It’s time to start adding tests. Let’s start by testing the happy path. Add a test method named
GetCustomerOrdersAsync_Returns_Orders_For_Valid_CustomerId:

[Fact]

public async Task GetCustomerOrdersAsync_Returns_

 Orders_For_Valid_CustomerId()

{

 var service = new BookOrderService();

 int customerId = 3;

 var orders = await service.GetCustomerOrdersAsync

 (customerId);

 Assert.NotNull(orders);

 Assert.True(orders.Any());

 Assert.StartsWith(customerId.ToString(),

 orders[0]);

}

Unit testing asynchronous code 267

After calling GetCustomerOrdersAsync with customerId of 3, our code has
three assertions:

 � First, we’re checking that the list of orders is not null.

 � Second, we’re checking that the list contains some items.

 � Finally, we check that the first order starts with customerId.

8. Click on Test | Run All Tests to ensure that this test passes.

9. Let’s write that same test with a new customerId but without async and await. Assume
that you have some legacy test code that just cannot be refactored, and you have to test the
GetCustomerOrdersAsync method. That code would look like this:

[Fact]

public void GetCustomerOrdersAsync_Returns_Orders

 _For_Valid_CustomerId_Sync()

{

 var service = new BookOrderService();

 int customerId = 5;

 List<string> orders = service.GetCustomer

 OrdersAsync(customerId).GetAwaiter()

 .GetResult();

 Assert.NotNull(orders);

 Assert.True(orders.Any());

 Assert.StartsWith(customerId.ToString(),

 orders[0]);

}

The test method is not async and returns void. Instead of using await to allow
GetCustomerOrdersAsync to run to completion, we are calling GetAwaiter().
GetResult(). The setup and assertion sections of the code remain the same.

10. Click on Test | Run All Tests to make sure both of our tests are green (passing).

11. Finally, we are going to test the exception case. Create another test but pass a negative
customerId to the method under test. The entire call to GetCustomerOrdersAsync
will be wrapped in an Assert.ThrowsAsync<ArgumentException> invocation:

[Fact]

public async Task GetCustomerOrdersAsync_

 Throws_Exception_For_Invalid_CustomerId()

{

Unit Testing Async, Concurrent, and Parallel Code268

 var service = new BookOrderService();

 await Assert.ThrowsAsync<ArgumentException>(async

 () => await service.GetCustomerOrdersAsync

 (-2));

}

12. Execute Run All Tests one last time and ensure that they are all passing:

Figure 12.3 – Viewing three passing tests in Test Explorer

We now have three passing unit tests for the GetCustomerOrdersAsync method. The first
two are essentially testing the same thing, but they are demonstrating two different ways of writing
the test. You will be using the async method in most cases. The final test provides test coverage of
the code that throws ArgumentException. If you are using Visual Studio Enterprise edition or
a third-party tool such as dotCover, you can use their visualization tools to view which parts of your
code are covered by unit tests and which are not.

Now that we have some familiarity with testing async methods, let’s move on to working with
concurrent data structures in a system under test.

Unit testing concurrent code
In this section, we will adapt a sample from Chapter 9, to add unit test coverage. When your code uses
async and await, adding reliable test coverage is very simple. At the end of the example, we will
examine an alternative method of waiting to perform your assertions by using the SpinLock struct.

Unit testing concurrent code 269

Let’s create an xUnit.net unit test project for the ConcurrentOrderQueue project and add
several tests:

1. Start by copying the ConcurrentOrderQueue project from Chapter 9. You can get the source code
from the GitHub repository if you do not already have a copy of it: https://github.com/
PacktPublishing/Parallel-Programming-and-Concurrency-with-C-
sharp-10-and-.NET-6/tree/main/chapter09/ConcurrentOrderQueue.

2. Open the ConcurrentOrderQueue solution in Visual Studio.

3. Right-click the solution file in Solution Explorer and click on Add | New Project. Add an
xUnit Unit Test project named ConcurrentOrderQueue.Tests. Make sure to add
the new project inside the ConcurrentOrderQueue folder.

4. If your new test project also appears as a folder under the ConcurrentOrderQueue project,
right-click on the ConcurrentOrderQueue.Tests folder and select Exclude from Project.

5. Add Project Reference from the new project to the ConcurrentOrderQueue project and
rename the UnitTest1 class OrderServiceTests.

6. In order to control which CustomerId values are used to generate the list of orders,
we are going to create a new overload for the public EnqueueOrders method in the
OrderService class:

public async Task EnqueueOrders(List<int> customerIds)

{

 var tasks = new List<Task>();

 foreach (int id in customerIds)

 {

 tasks.Add(EnqueueOrders(id));

 }

 await Task.WhenAll(tasks);

}

This method takes a list of customerId and calls the private EnqueueOrders method
for each of them, adding Task from each call to List<Task> to be awaited before
exiting the method.

7. We can now optimize the parameterless version of EnqueueOrders by having it call this
new overload:

public async Task EnqueueOrders()

{

 await EnqueueOrders(new List<int> { 1, 2 });

}

https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/ConcurrentOrderQueue
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/ConcurrentOrderQueue
https://github.com/PacktPublishing/Parallel-Programming-and-Concurrency-with-C-sharp-10-and-.NET-6/tree/main/chapter09/ConcurrentOrderQueue

Unit Testing Async, Concurrent, and Parallel Code270

8. Create a new unit test method in the OrderServiceTests class to test EnqueueOrders:

[Fact]

public async Task EnqueueOrders_Creates_Orders_For_

 All_Customers()

{

 var orderService = new OrderService();

 var orderNumbers = new List<int> { 2, 5, 9 };

 await orderService.EnqueueOrders(orderNumbers);

 var orders = orderService.DequeueOrders();

 Assert.NotNull(orders);

 Assert.True(orders.Any());

 Assert.Contains(orders, o => o.CustomerId == 2);

 Assert.Contains(orders, o => o.CustomerId == 5);

 Assert.Contains(orders, o => o.CustomerId == 9);

}

The test will call EnqueueOrders with three customer IDs. After EnqueueOrders
and DequeueOrders are complete, we assert that the orders collection is not null,
contains some orders, and contains orders with all three of our customer IDs.

9. Run the new test and ensure that it passes.

This covers the basics of working with a system under test that uses ConcurrentQueue. Let’s
consider another scenario where we are working with code but cannot use async and await in our
tests. Perhaps the method under test is not async. One of the tools at our disposal is the SpinWait
struct. This struct contains some methods that provide non-locking mechanisms for waiting in our
code. We will use SpinWait.WaitUntil() to wait until all orders have been enqueued.

The following steps will demonstrate how to reliably test the result of a method when you cannot
explicitly wait for it to complete:

1. Start by adding a new public variable to the OrderService class to expose the number of
customers whose orders have been enqueued:

public int EnqueueCount = 0;

2. Next, increment EnqueueCount at the end of the private EnqueueOrders method:

private async Task EnqueueOrders(int customerId)

{

 for (int i = 1; i < 6; i++)

 {

Unit testing concurrent code 271

 ...

 }

 EnqueueCount++;

}

3. Now, create an EnqueueOrdersSync public method to be called from our new test. It will
be similar to the public EnqueueOrders method. The differences between the previous
example and this one are that it is not async, it resets EnqueueCount to 0, and it does
not wait for the tasks to be completed:

public void EnqueueOrdersSync(List<int> customerIds)

{

 EnqueueCount = 0;

 var tasks = new List<Task>();

 foreach (int id in customerIds)

 {

 tasks.Add(EnqueueOrders(id));

 }

}

4. Next, we will create a new synchronous test method to test EnqueueOrdersSync:

[Fact]

public void EnqueueOrders_Creates_Orders_For_All

 _Customers_SpinWait()

{

 var orderService = new OrderService();

 var orderNumbers = new List<int> { 2, 5, 9 };

 orderService.EnqueueOrdersSync(orderNumbers);

 SpinWait.SpinUntil(() => orderService.EnqueueCount

 == orderNumbers.Count);

 var orders = orderService.DequeueOrders();

 Assert.NotNull(orders);

 Assert.True(orders.Any());

 Assert.Contains(orders, o => o.CustomerId == 2);

 Assert.Contains(orders, o => o.CustomerId == 5);

 Assert.Contains(orders, o => o.CustomerId == 9);

}

Unit Testing Async, Concurrent, and Parallel Code272

The differences are highlighted in the preceding code snippet. SpinWait.SpinUntil
will wait without locking until the orderService.EnqueueCount value matches
the orderNumbers.Count. If you want to ensure it doesn’t spin forever, there are
overloads for providing a timeout period as either TimeSpan or in milliseconds.

5. Run the tests again and make sure that they both pass. We now have unit test methods that are
testing the two methods available to enqueue orders in the OrderService class. In your
own projects, you would add more scenarios to increase the test coverage of the class. You
should always test things, such as how your code handles invalid input.

It is important to remember when unit testing multithreaded code that if you are not using async
and await or some other synchronization method, your tests are going to be unreliable. Having
unreliable tests is as bad as having no tests at all. Be sure to design and develop your unit tests with
care. It is best to use async/await wherever possible for maximum reliability.

In the next section, we will build some unit tests for code that use the Parallel.ForEach and
Parallel.ForEachAsync methods.

Unit testing parallel code
Creating unit tests for code that use Parallel.Invoke, Parallel.For, Parallel.
ForEach, and Parallel.ForEachAsync is relatively straightforward. While they can run
processes in parallel when conditions are suitable, they run synchronously relative to the invoking
code. Unless you wrap Parallel.ForEach in a Task.Run statement, the flow of code will
not continue until all iterations of the loop have been completed.

The one caveat to consider when testing code that uses parallel loops is the type of exceptions to
expect. If an exception is thrown within the body of one of these constructs, the surrounding code
must catch AggregateException. The exception to this Exception rule is Parallel.
ForEachAsync. Because it is called with async/await, you must handle Exception instead
of AggregateException. Let’s create an example to illustrate these scenarios:

1. Create a new Class Library project in Visual Studio named ParallelExample.

2. Rename Class1 TextService and create a method named ProcessText in this class:

public List<string> ProcessText(List<string>

 textValues)

{

 List<string> result = new();

 Parallel.ForEach(textValues, (txt) =>

 {

 if (string.IsNullOrEmpty(txt))

 {

Unit testing parallel code 273

 throw new Exception("Strings cannot be

 empty");

 }

 result.Add(string.Concat(txt,

 Environment.TickCount));

 });

 return result;

}

This method accepts a list of strings and appends Environment.TickCount to each
value inside a Parallel.ForEach loop. If any of the strings are null or empty,
Exception will be thrown.

3. Next, create the async version of ProcessText and name it ProcessTextAsync.
The async version uses Parallel.ForEachAsync to perform the same operation:

public async Task<List<string>>

 ProcessTextAsync(List<string> textValues)

{

 List<string> result = new();

 await Parallel.ForEachAsync(textValues, async

 (txt, _) =>

 {

 if (string.IsNullOrEmpty(txt))

 {

 throw new Exception("Strings cannot

 be empty");

 }

 result.Add(string.Concat(txt,

 Environment.TickCount));

 await Task.Delay(100);

 });

 return result;

}

4. Add a new xUnit Test project to the solution and name it ParallelExample.Tests.

5. Rename the UnitTest1 class TextServiceTests and add a Project reference to the
ParallelExample project.

Unit Testing Async, Concurrent, and Parallel Code274

6. Next, we will add two unit tests to test the ProcessText method:

[Fact]

public void ProcessText_Returns_Expected_Strings()

{

 var service = new TextService();

 var fruits = new List<string> { "apple", "orange",

 "banana", "peach", "cherry" };

 var results = service.ProcessText(fruits);

 Assert.Equal(fruits.Count, results.Count);

}

[Fact]

public void ProcessText_Throws_Exception_For

 _Empty_String()

{

 var service = new TextService();

 var fruits = new List<string> { "apple", "orange",

 "banana", "peach", "" };

 Assert.Throws<AggregateException>(() =>

 service.ProcessText(fruits));

}

The first test calls ProcessText with a list of five-string values containing fruit names.
The assertion checks that results.Count matches fruits.Count.

The second test makes the same call, but one of the fruits string values is empty. This test
will ensure that AggregateException is thrown by the Parallel.ForEach loop
in the method under test.

7. Add two more tests. These two tests will run the same assertions on the ProcessTextAsync
method. The difference here is that Assert.ThrowsAsync must check for Exception
instead of AggregateExceptoin because we are using async/await:

[Fact]

public async Task ProcessTextAsync_Returns_Expected

 _Strings()

{

 var service = new TextService();

 var fruits = new List<string> { "apple", "orange",

 "banana", "peach", "cherry" };

Unit testing parallel code 275

 var results = await service.ProcessTextAsync

 (fruits);

 Assert.Equal(fruits.Count, results.Count);

}

[Fact]

public async Task ProcessTextAsync_Throws_Exception

 _For_Empty_String()

{

 var service = new TextService();

 var fruits = new List<string> { "apple", "orange",

 "banana", "peach", "" };

 await Assert.ThrowsAsync<Exception>(async () =>

 await service.ProcessTextAsync(fruits));

}

8. Run all four tests with the Run All Tests in View button in the Text Explorer window. If the
window is not visible in Visual Studio, you can open it from View | Test Explorer. All tests
should pass:

Figure 12.4 – Four tests passing in the TextServiceTests class

You now have two tests for each of the methods for processing text in the TextService class. They
are testing valid and invalid input data successfully. Spend some time on your own to examine how
the test coverage could be expanded. What other types of input could be used?

Unit Testing Async, Concurrent, and Parallel Code276

In the final section of this chapter, we will examine how you can build memory leak detection into
your automated unit test suite.

Checking for memory leaks with unit tests
Memory leaks are by no means unique to multithreaded code, but they certainly can happen. The
more code that is executing in your application, the more likely it is that some objects are going to
leak. The company that makes the popular .NET tools, ReSharper and Rider, also makes a tool
called dotMemory for analyzing memory leaks. While these tools are not free, JetBrains does offer
its memory unit testing tool for free. It’s called dotMemory Unit.

In this section, we will create a dotMemory Unit test to check whether we are leaking one of our objects.
You can run these dotMemory Unit tests for free with .NET on the command line by downloading
the standalone test runner here: https://www.jetbrains.com/dotmemory/unit/.

Note
For more information about using the free tooling, you can read about it here: https://
www.jetbrains.com/help/dotmemory-unit/Using_dotMemory_Unit_
Standalone_Runner.html. JetBrains also has integration for dotMemory Unit in its
ReSharper and Rider tools. If you have licenses for either of these tools, it greatly simplifies
the process of running these tests.

Let’s create an example demonstrating how to create a unit test that determines whether objects are
being leaked in memory by the code under test:

1. Start by creating a new Class Library project named MemoryExample.

2. Rename Class1 WorkService and add another class named Worker. Add the following
code to the Worker class. The DoWork method in this class will handle a TimerElapsed
event in WorkService:

public class Worker : IDisposable

{

 public void Dispose()

 {

 // dispose objects here

 }

 public void DoWork(object? sender,

 System.Timers.ElapsedEventArgs e)

 {

 Parallel.For(0, 5, (x) =>

https://www.jetbrains.com/help/dotmemory-unit/Using_dotMemory_Unit_Standalone_Runner.html
https://www.jetbrains.com/help/dotmemory-unit/Using_dotMemory_Unit_Standalone_Runner.html
https://www.jetbrains.com/help/dotmemory-unit/Using_dotMemory_Unit_Standalone_Runner.html

Checking for memory leaks with unit tests 277

 {

 Thread.Sleep(100);

 });

 }

}

This class implements IDisposable, so we can use it with a using statement
elsewhere.

3. Add a WorkWithTimer method to the WorkService class:

public void WorkWithTimer()

{

 using var worker = new Worker();

 var timer = new System.Timers.Timer(1000);

 timer.Elapsed += worker.DoWork;

 timer.Start();

 Thread.Sleep(5000);

}

This code has some problems that will prevent the worker object from being released from
memory. The timer object is not stopped or disposed of, and the Elapsed event is never
unhooked. When we check for leaks, we should find some.

4. Add a new xUnit Test project to the solution named MemoryExample.Tests.

5. Add a project reference to MemoryExample and add a NuGet package reference to JetBrains.
dotMemoryUnit:

Figure 12.5 – Referencing the dotMemoryUnit NuGet package

6. Rename the UnitTest1 class in MemoryExample.Tests WorkServiceMemoryTests
and add the following code:

using JetBrains.dotMemoryUnit;

[assembly: SuppressXUnitOutputExceptionAttribute]

namespace MemoryExample.Tests

{

 public class WorkServiceMemoryTests

 {

Unit Testing Async, Concurrent, and Parallel Code278

 [Fact]

 public void WorkWithSquares_Releases_Memory_

 From_Bitmaps()

 {

 var service = new WorkService();

 service.WorkWithTimer();

 GC.Collect();

 // Make sure there are no Worker

 objects in memory

 dotMemory.Check(m => Assert.Equal(0,

 m.GetObjects(o =>

 o.Type.Is<Worker>())

 .ObjectsCount));

 }

 }

}

A few lines are highlighted in the previous snippet. An assembly attribute must be added
to suppress an error in the console runner when using xUnit.net with dotMemory Unit.
After calling the method under test, WorkWithTimer, we are calling GC.Collect to
attempt to clean all unused managed objects from memory. Finally, dotMemory.Check
is called to determine whether there are any objects of the Worker type remaining in
memory.

7. Run the following command either in PowerShell or the Windows command line from the
folder where you downloaded and extracted the dotMemory Unit command-line tool. If you
use PowerShell, the .\ characters are required:

.\dotMemoryUnit.exe "c:\Program Files\dotnet\dotnet.exe"
– test "c:\dev\net6.0\MemoryExample.Tests.dll"

The path to .NET should be the same on your system. You will need to replace the path to
MemoryExample.Tests.dll with your own output path where this DLL resides. The
test should fail, with one Worker object remaining in memory, and your output will look
something like this:

Checking for memory leaks with unit tests 279

Figure 12.6 – Reviewing the failed dotMemoryUnit test run

8. In order to fix the problem, make the following changes to your WorkService.
WorkWithTimer method:

public void WorkWithTimer()

{

 using var worker = new Worker();

 using var timer = new System.Timers.Timer(1000);

 timer.Elapsed += worker.DoWork;

 timer.Start();

 Thread.Sleep(5000);

 timer.Stop();

 timer.Elapsed -= worker.DoWork;

}

To make sure the worker object instance is released, we’re initializing timer in a using
statement, stopping timer when it’s finished, and unhooking the timer.Elapsed
event handler.

Unit Testing Async, Concurrent, and Parallel Code280

9. Now, execute the dotMemory Unit command again. The test should succeed now:

Figure 12.7 – The dotMemoryUnit test runs successfully

That concludes this example and the section on memory unit tests. If you would like to read
more about dotMemory Unit, you can find its documentation here: https://www.jetbrains.
com/help/dotmemory-unit/Introduction.html. The command-line tool can
also be deployed to a continuous integration (CI) build server to execute these tests as part of a CI
build process.

Let’s finish up by reviewing what we have learned in the final chapter of this book.

Summary
In this chapter, we learned about some tools and techniques to unit test .NET projects that contain
different multithreaded constructs. We started by discussing the best methods for testing C# code
that employs async/await. This will be common in modern applications, and it is important to
have a suite of automated unit tests covering your async code.

We also walked through some examples of unit tests that test methods that leverage parallel constructs
and concurrent data structures. In the last section of the chapter, we learned about dotMemory Unit
from JetBrains. This free unit testing tool adds the ability to detect objects leaked by methods under
test. It is a powerful automation tool for synchronous and asynchronous .NET code.

This is the final chapter. Thanks for following along on this multithreading journey. Hopefully, you
didn’t encounter any deadlocks or race conditions along the way. This book provided guidance for

https://www.jetbrains.com/help/dotmemory-unit/Introduction.html
https://www.jetbrains.com/help/dotmemory-unit/Introduction.html

Questions 281

your path through the modern, multithreaded world of .NET and C#. You should now have an
understanding of the asynchronous, concurrent, and parallel methods and structures to build fast
and reliable .NET applications. If you want to learn more about these topics, I suggest reading the
.NET Parallel Programming blog (https://devblogs.microsoft.com/pfxteam/) and
relying on the .NET documentation (https://docs.microsoft.com/dotnet/). You can
search for documentation on any of the topics in this book to learn more.

Questions
1. What is the keyword used in .NET attributes that decorate an xUnit.net test method?

2. What method can you use to add await to your code without locks?

3. What type of exception should you expect in unit test assertions when the method under test
contains a Parallel.ForEach loop?

4. What type of exception should you expect in unit test assertions when the method under test
contains a Parallel.ForEachAsync loop?

5. How can you check that an object isn’t null in an xUnit.net assertion?

6. What is the name of the window in Visual Studio where unit tests can be managed and run?

7. What are the three most popular unit test frameworks for .NET?

8. Which JetBrains products provide tooling to run dotMemory Unit tests?

https://devblogs.microsoft.com/pfxteam/
https://docs.microsoft.com/dotnet/

A s s e s s m e n t s

This section contains answers to questions from all chapters.

Chapter 1, Managed Threading Concepts
1. A managed thread is a thread that is created in .NET-managed code with the System.

Threading.Thread object.

2. Set the Thread.IsBackground property to true before calling Thread.Start().

3. .NET will throw a ThreadStateException exception.

4. .NET prioritizes managed threads mostly based on their Thread.Priority value.

5. ThreadPriority.Highest.

6. Thread.Abort() is not supported by .NET 6. The code will not compile.

7. Add an object parameter to the method to be started by the new thread, and pass the data when
calling Thread.Start(data).

8. Pass the delegate to the cancellation token’s Register method.

Chapter 2, Evolution of Multithreaded Programming
in .NET

1. ThreadPool

2. C# 5.0

3. .NET Framework 4.5

4. .NET Core 3.0

5. Task, Task<T>, ValueTask, or ValueTask<T>

6. ConcurrentDictionary<TKey, TValue>

7. BlockingCollection<T>

8. Parallel LINQ (PLINQ)

Assessments284

Chapter 3, Best Practices for Managed Threading
1. Singleton.

2. ThreadStatic.

3. A deadlock occurs when multiple threads are all waiting to access a locked resource and cannot
proceed.

4. Monitor.TryEnter.

5. Interlocked.

6. Interlocked.Add.

7. MaxDegreeOfParallelism.

8. Use the WithDegreeOfParallelism extension method.

9. ThreadPool.GetMinThreads().

Chapter 4, User Interface Responsiveness and Threading
1. Task or Task<T>.

2. Task.WhenAll.

3. Task.Factory.StartNew.

4. A background thread on ThreadPool.

5. Application.Current.Dispatcher.Invoke.

6. this.BeginInvoke.

7. Check the this.InvokeRequired property.

Chapter 5, Asynchronous Programming with C#
1. Task.Result.

2. Task.WhenAll().

3. Task.WaitAll().

4. Task, Task<TResult>, ValueTask, or ValueTask<TResult>.

5. I/O-bound operations such as a file or network access are best suited for async methods.

6. False. It is a best practice to always suffix async methods with Async.

7. Task.Run.

Chapter 6, Parallel Programming Concepts 285

Chapter 6, Parallel Programming Concepts
1. Parallel.For.

2. Parallel.ForEachAsync.

3. Parallel.Invoke.

4. TaskCreationOptions.AttachToParent.

5. TaskCreationOptions.DenyAttach.

6. Task.Run will always deny child tasks from attaching. Also, Task.Run has no overloaded
methods to provide TaskCreationOptions.

7. No, regular for and foreach loops can be faster if each loop iteration is fast-running and/
or there are only a few iterations of the loop.

Chapter 7, Task Parallel Library (TPL) and Dataflow
The following are the answers to this chapter’s questions:

1. JoinBlock.

2. BufferBlock is a propagator block.

3. BufferBlock.

4. JoinTo().

5. Complete().

6. SendAsync().

7. ReceiveAsync().

Chapter 8, Parallel Data Structures and Parallel LINQ
1. AsParallel().

2. AsSequential().

3. AsOrdered().

4. ForAll().

5. AsOrdered() can significantly decrease performance for a query.

6. OrderBy and OrderByDescending. They will default to ParallelMergeOptions.
FullyBuffered.

Assessments286

7. No. PLINQ has additional overhead that can cause queries on smaller datasets or simple
queries to be slower.

8. ParallelMergeOptions.NotBuffered.

Chapter 9, Working with Concurrent Collections in .NET
1. BlockingCollection<T>.

2. ConcurrentQueue<T>.

3. BlockingCollection<T>.

4. ConcurrentDictionary<TKey, TValue>.

5. Enqueue().

6. TryAdd() and TryGetValue().

7. No. Always add your own synchronization mechanisms when using extension methods with
concurrent collections, including standard LINQ operators.

Chapter 10, Debugging Multithreaded Applications with
Visual Studio

1. Use the Attach to Process window or set multiple startup projects in the solution file.

2. They are grouped by process.

3. Right-click in the window and select Columns.

4. The Parallel Stacks window.

5. .PNG files.

6. Four.

7. The Debug Location toolbar.

8. Click the Flag Just My Code button.

Chapter 11, Canceling Asynchronous Work
1. CancellationToken.IsCancellationRequested

2. CancellationTokenSource

3. OperationCanceledException

4. Register callback

5. ManualResetEventSlim

Chapter 12, Unit Testing Async, Concurrent, and Parallel Code 287

6. ManualResetEventSlim.Reset

7. CancellationTokenSource.CreateLinkedTokenSource

Chapter 12, Unit Testing Async, Concurrent, and Parallel
Code

1. Fact

2. SpinLock.WaitUntil

3. AggregateException

4. Exception

5. Assert.NotNull

6. Test Explorer

7. MSTest, NUnit, and xUnit .NET

8. ReSharper, Rider, and the dotMemory Unit standalone console runner

Index

Symbols
.NET

background threads 5-8
data structures, for parallel

programming 186
managed threading 8, 9
multithreading, need for 5
processes 4, 5
threading basics 4
thread pool 27
threads 4, 5

.NET API
reference link 138

.NET task asynchronous programming
(TAP) model 91

.NET threading
C# 4 and .NET Framework 4.0 28
C# 5 and .NET Framework 4.5.x 29
C# 6 and .NET Framework 4.5.x 29
C# 7.x and .NET Core 2.0 29, 30
C# 8 and .NET Core 3.0 30, 31
C# 10 and .NET 6 31
right path forward, selecting 50
timers 33

A
AddOrUpdate method 47
anonymous methods 28
application domains 4
Arrange-Act-Assert pattern 263
ASP.NET Core 68
asynchronous code

unit testing 262-268
asynchronous programming

about 92
best practices 114, 115
CPU-bound operations 94-96
I/O-bound operations 92
nested async methods 97-102

asynchronous work
canceling 239

async keyword 47
async method

using 73-82
writing 48-50

async streams feature 30
await

using 73
Azure blob store 38

Index290

B
background threads

about 5-8, 72, 73
leveraging 72

BlockingCollection
about 192
details 192
using 192
using, with Parallel.ForEach

and PLINQ 193-199
blocks

about 142
used, for creating data pipeline 159-162

buffering blocks
about 146
BroadcastBlock 147
BufferBlock 146
WriteOnceBlock 147

C
cancellation request

handling, by polling 247
handling, with callback method 250-253
handling, with wait handles 254

cancellation token 240
code regions

synchronizing 14, 15
COM interop 8
completion task 143, 144
concurrency

about 43
BlockingCollection<T> 46
ConcurrentBag<T> 44
ConcurrentDictionary<TKey, TValue> 47
ConcurrentQueue<T> 45
ConcurrentStack<T> 45

ConcurrentBag<T>
about 199
using 200-203

concurrent code
unit testing 268-272

concurrent collections
about 187, 191
BlockingCollection 192
ConcurrentBag<T> 199
ConcurrentDictionary 204
ConcurrentQueue 210
ConcurrentStack 213

ConcurrentDictionary
about 204
using 205-210

ConcurrentQueue<T>
about 210
using 210-213

ConcurrentStack
about 213
using 213, 214

consumer 151
continuous integration (CI) 280
CPU-bound operations 119
CPU-bound operations, asynchronous

programming
about 94
examples 94-97

D
data

manipulating from multiple
data sources 163-165

data, across threads
code regions, synchronizing 14, 15
manual synchronization 16-18
synchronizing 14

Index 291

dataflow blocks
buffering blocks 146
execution blocks 147
grouping blocks 149
types 146

dataflow pipeline 143
data pipeline

creating, with multiple blocks 159-162
data structures for parallel

programming, .NET
concurrent collections 187
synchronization primitives 187

deadlocks
managing 60, 61
mitigating 61-63

debugging
about 220
project, with multiple threads 221-223

dependency injection (DI) 59
design pattern 59
discards, in C# 30
disposable type 16
dotMemory Unit

about 276
reference link 276

E
exceptions

handling, with PLINQ queries 174-177
execution blocks

about 147
ActionBlock 148
TransformBlock 148
TransformManyBlock 148

F
first in, first out (FIFO) 45

G
generics 28
GetOrAdd method 47
greedy mode 149
grouping blocks

about 149
BatchBlock 149
BatchedJoinBlock 151
JoinBlock 150

I
Interlocked class 66
Internet Archive

URL 251
I/O-bound operations 118
I/O-bound operations, asynchronous

programming
about 92
examples 93

L
lambda expression 28, 119, 121
last in, first out (LIFO) 45
LINQ 168, 169
LINQ queries

about 168
converting, to PLINQ 172, 173
example 169

locks 57

Index292

M
managed threading 8, 9
managed thread pool 32, 33
managed threads

canceling 240-242
creating 9-11
destroying 13
scheduling 18-24

manual synchronization 16-18
memory leaks

checking, with unit tests 276-280
messages

about 143
offering, from source block

to target block 143
sending, to target block 143

Model-View-ViewModel (MVVM)
(MVVM) 75

MSTest 262
multiple background tasks

working with 113, 114
multiple cancellation sources

handling 257, 258
multi-threaded debugging

features 220, 221
with Visual Studio 220

MVVM Toolkit
reference link 75

N
nested async methods

about 97
examples 97-102

network 143
non-greedy mode 149

NuGet package reference 277
NUnit 262

P
parallel application

debugging 229
debugging, with Parallel Stacks

window 229-233
debugging, with Parallel Watch

window 234-237
parallel child tasks 132-136
parallel class 28
parallel code

unit testing 272-275
Parallel.Invoke 131, 132
parallelism

about 37
limitations 137, 138
Parallel.ForEach 40, 41
Parallel.Invoke 38-40

parallel loops, in .NET
about 119
canceling 243-245
Parallel.ForEachAsync loop 128-131
Parallel.ForEach loops 126
Parallel.For loops 119-124
with thread-local variable 124-128

ParallelMergeOptions
AutoBuffered option 183
Default value 183
FullyBuffered option 183
NotBuffered option 183

Parallel Stacks window 229
parallel tasks

parallel child tasks 132-136

Index 293

Parallel.Invoke 131, 132
relationships between 131

Parallel Watch window 234
parallel work

canceling 242
patterns, for thread cancellation

discovering 247
PLINQ

about 29, 168, 169
basics 41-43
data, merging 178
data order, preserving 178
data order samples 178-182
LINQ queries, converting to 172, 173
performance 169, 170
query syntax, versus method syntax 171

PLINQ queries
about 168, 169
canceling 245-247
creating 170, 171
exceptions, handling with 174-177
WithMergeOptions, using 182

polling
about 247
cancellation request, handling with 247-250

PowerShell 278
processes

about 4, 5
debugging 221

producer 151
producer/consumer pattern 192

about 46
implementing 151-158

project
debugging, with multiple threads 221-223

propagator blocks 142

Q
queue 45

R
race conditions

avoiding 63-66
managing 60, 61

regular expression
using 196

remote debugging 221
ReSharper 276
Rider 276

S
shared access to static objects, controlling

locks 57
ThreadStatic attribute 57, 59
working, with singleton pattern 59, 60

source blocks 142
stack 45
standalone discard 30
static constructor 54-56
static data 54-56
static objects

handling 54
shared access, controlling to 56

synchronization primitives
about 187
reference link 188

synchronous code
async methods, consuming 107-110
executing, as async 110-113
using 106

System.Threading.Timer 35-37
System.Timers.Timer 33-35

Index294

T
target blocks 142
Task 73
Task methods

processOrdersTask.ContinueWith 103
Task.Factory.StartNew 103
Task.Run 103
Task.WaitAll 103

Task objects
Task methods, exploring 103-105
Task properties, exploring 105, 106
working with 102

Task Parallel Library (TPL)
CPU-bound operations 119
I/O-bound operations 118
using 118

thread cancellation
canceling, with callbacks 250-254
canceling, with polling 247-250
canceling, with wait handles 254-256
patterns, discovering 247

threading
limitations 66-68
recommendations 66-68

threading exceptions
handling 13, 14

thread-local variable 124
thread pool

about 27
using 82-85

threads
about 4, 5
debugging 221
execution, pausing 11, 12
multiple threads, used for

debugging project 221-223

thread-safe collections 28
thread starvation

about 68
scenarios 68

ThreadStatic attribute 57, 59
Threads window

about 224
exploring 224, 225
threads, flagging 226-228
threads, freezing 228
threads, switching 226

timers
about 33
System.Threading.Timer 35-37
System.Timers.Timer 33-35

TPL Dataflow Library
about 142
need for 145, 146
propagator blocks 142
source blocks 142
target blocks 142

TryAdd method 47
TryUpdate method 47

U
UI thread, without exceptions

updating 85-87
unit testing

asynchronous code 262-268
concurrent code 268-272
memory leaks, checking with 276-280
parallel code 272-275

unmanaged threading 8
user interface (UI) 5

Index 295

V
Visual Studio

multi-threaded debugging 220

W
wait handles

cancellation request, handling with 254-256
WhenAll method

using 78, 81
Windows command line 278
Windows Community Toolkit 75
Windows Forms (WinForms) 35
Windows Presentation Foundation (WPF) 74
WinForms application 119
WithMergeOptions

using, in PLINQ queries 182
working 183-186

work
canceling 18
scheduling 18

X
xUnit.net 262

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

298 Other Books You May Enjoy

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Enterprise Application Development with C# 10 and .NET 6 - Second Edition

Ravindra Akella, Arun Kumar Tamirisa, Suneel Kumar Kunani, Bhupesh Guptha Muthiyalu

ISBN: 9781803232973

• Design enterprise apps by making the most of the latest features of .NET 6

• Discover different layers of an app, such as the data layer, API layer, and web layer

• Explore end-to-end architecture by implementing an enterprise web app using .NET and C#
10 and deploying it on Azure

• Focus on the core concepts of web application development and implement them in .NET 6

• Integrate the new .NET 6 health and performance check APIs into your app

• Explore MAUI and build an application targeting multiple platforms - Android, iOS, and Windows

https://packt.link/9781803232973

299Other Books You May Enjoy

High-Performance Programming in C# and .NET

Jason Alls

ISBN: 9781800564718

• Use correct types and collections to enhance application performance

• Profile, benchmark, and identify performance issues with the codebase

• Explore how to best perform queries on LINQ to improve an application’s performance

• Effectively utilize a number of CPUs and cores through asynchronous programming

• Build responsive user interfaces with WinForms, WPF, MAUI, and WinUI

• Benchmark ADO.NET, Entity Framework Core, and Dapper for data access

• Implement CQRS and event sourcing and build and deploy microservices

https://packt.link/9781800564718

300

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Parallel Programming and Concurrency with C# 10 and .NET 6, we’d love to
hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803243678
https://packt.link/r/1803243678

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Introduction to Threading in .NET
	Chapter 1: Managed
Threading Concepts
	Technical requirements
	.NET threading basics
	Threads and processes
	When should we use multithreading in .NET?
	Background threads
	What is managed threading?

	Creating and destroying threads
	Creating managed threads
	Pausing thread execution
	Destroying managed threads

	Handling threading exceptions
	Synchronizing data across threads
	Synchronizing code regions
	Manual synchronization

	Scheduling and canceling work
	Scheduling managed threads
	Canceling managed threads

	Summary
	Questions

	Chapter 2: Evolution of Multithreaded Programming in .NET
	Technical requirements
	.NET threading through the years
	C# 4 and .NET Framework 4.0
	C# 5 and 6 and .NET Framework 4.5.x
	C# 7.x and .NET Core 2.0
	C# 8 and .NET Core 3.0
	C# 10 and .NET 6

	Beyond threading basics
	Managed thread pool
	Threading and timers

	Introduction to parallelism
	Using Parallel.Invoke
	Using Parallel.ForEach
	Basics of Parallel LINQ

	Introduction to concurrency
	ConcurrentBag<T>
	ConcurrentQueue<T>
	ConcurrentStack<T>
	BlockingCollection<T>
	ConcurrentDictionary<TKey, TValue>

	Basics of async and await
	Understanding the async keyword
	Writing an async method

	Choosing the right path forward
	Summary
	Questions

	Chapter 3: Best Practices for Managed Threading
	Technical requirements
	Handling static objects
	Static data and constructors
	Controlling shared access to static objects

	Managing deadlocks and race conditions
	Mitigating deadlocks
	Avoiding race conditions

	Threading limits and other recommendations
	Summary
	Questions

	Chapter 4: User Interface Responsiveness and Threading
	Technical requirements
	Leveraging background threads
	Which threads are background threads?
	Using async, await, tasks, and WhenAll

	Using the thread pool
	Updating the UI thread without exceptions
	Summary
	Questions

	Part 2: Parallel Programming and Concurrency with C#
	Chapter 5: Asynchronous Programming with C#
	Technical requirements
	More about asynchronous programming in .NET
	I/O-bound operations
	CPU-bound operations
	Nested async methods

	Working with Task objects
	Exploring Task methods
	Exploring Task properties

	Interop with synchronous code
	Executing async from synchronous methods
	Executing synchronous code as async

	Working with multiple background tasks
	Asynchronous programming best practices
	Summary
	Questions

	Chapter 6: Parallel Programming Concepts
	Technical requirements
	Getting started with the TPL
	I/O-bound operations
	CPU-bound operations

	Parallel loops in .NET
	Basic Parallel.For loops
	Parallel loops with thread-local variables
	Simple Parallel.ForEach loops
	Cancel a Parallel.ForEachAsync loop

	Relationships between parallel tasks
	Under the covers of Parallel.Invoke
	Understanding parallel child tasks

	Common pitfalls with parallelism
	Parallelism is not guaranteed
	Parallel loops are not always faster
	Beware of blocking the UI thread
	Thread safety
	UI controls
	ThreadLocal data

	Summary
	Questions

	Chapter 7: Task Parallel Library (TPL) and Dataflow
	Technical requirements
	Introducing the TPL Dataflow library
	Why use the TPL Dataflow library?
	Types of dataflow blocks

	Implementing the producer/consumer pattern
	Creating a data pipeline with multiple blocks
	Manipulating data from multiple data sources
	Summary
	Questions

	Chapter 8: Parallel Data Structures and Parallel LINQ
	Technical requirements
	Introducing PLINQ
	PLINQ and performance
	Creating a PLINQ query
	Query syntax versus method syntax

	Converting LINQ queries to PLINQ
	Handling exceptions with PLINQ queries

	Preserving data order and merging data with PLINQ
	PLINQ data order samples
	Using WithMergeOptions in PLINQ queries

	Data structures for parallel programming in .NET
	Concurrent collections
	Synchronization primitives

	Summary
	Questions

	Chapter 9: Working with Concurrent Collections in .NET
	Technical requirements
	Using BlockingCollection
	BlockingCollection details
	Using BlockingCollection with Parallel.ForEach and PLINQ

	Using ConcurrentBag
	Using ConcurrentDictionary
	Using ConcurrentQueue
	Using ConcurrentStack
	Summary
	Questions

	Part 3:
Advanced Concurrency Concepts
	Chapter 10: Debugging Multithreaded Applications with Visual Studio
	Technical requirements
	Introducing multithreaded debugging
	Debugging threads and processes
	Debugging a project with multiple threads
	Exploring the Threads window

	Switching and flagging threads
	Switching threads
	Flagging threads
	Freezing threads

	Debugging a parallel application
	Using the Parallel Stacks window
	Using the Parallel Watch window

	Summary
	Questions

	Chapter 11: Canceling Asynchronous Work
	Technical requirements
	Canceling managed threads
	Canceling parallel work
	Canceling a parallel loop
	Canceling a PLINQ query

	Discovering patterns for thread cancellation
	Canceling with polling
	Canceling with callbacks
	Canceling with wait handles

	Handling multiple cancellation sources
	Summary
	Questions

	Chapter 12: Unit Testing Async, Concurrent, and Parallel Code
	Technical requirements
	Unit testing asynchronous code
	Unit testing concurrent code
	Unit testing parallel code
	Checking for memory leaks with unit tests
	Summary
	Questions

	Assessments
	Index
	Other Books You May Enjoy

